Do you want to publish a course? Click here

How Efficient is Rotational Mixing in Massive Stars ?

272   0   0.0 ( 0 )
 Added by Ines Brott
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The VLT-Flames Survey for Massive Stars (Evans05,Evans06) provides recise measurements of rotational velocities and nitrogen surface abundances of massive stars in the Magellanic Clouds. Specifically, for the first time, such abundances have been estimated for stars with significant rotational velocities. This extraordinary data set gives us the unique possibility to calibrate rotationally and magnetically induced mixing processes. Therefore, we have computed a grid of stellar evolution models varying in mass, initial rotational velocity and chemical composition. In our models we find that although magnetic fields generated by the Spruit-Taylor dynamo are essential to understand the internal angular momentum transport (and hence the rotational behavior), the corresponding chemical mixing must be neglected to reproduce the observations. Further we show that for low metallicities detailed initial abundances are of prime importance, as solar-scaled abundances may result in significant calibration errors.



rate research

Read More

Convection in the cores of massive stars becomes anisotropic when they rotate. This anisotropy leads to a misalignment of the thermal gradient and the thermal flux, which in turn results in baroclinicity and circulation currents in the upper radiative zone. We show that this induces a much stronger meridional flow in the radiative zone than previously thought. This drives significantly enhanced mixing, though this mixing does not necessarily reach the surface. The extra mixing takes on a similar form to convective overshooting, and is relatively insensitive to the rotation rate above a threshold, and may help explain the large overshoot distances inferred from observations. This has significant consequences for the evolution of these stars by enhancing core-envelope mixing.
One of the main uncertainties in evolutionary calculations of massive stars is the efficiency of internal mixing. It changes the chemical profile inside the star and can therefore affect the structure and further evolution. We demonstrate that eclipsing binaries, in which the tides synchronize the rotation period of the stars and the orbital period, constitute a potentially strong test for the efficiency of rotational mixing. We present detailed stellar evolutionary models of massive binaries assuming the composition of the Small Magellanic Cloud. In these models we find enhancements in the surface nitrogen abundance of up to 0.6 dex.
122 - Duy Cuong Nguyen 2009
We analyze the variability in accretion-related emission lines for 40 Classical T Tauri stars to probe the extent of accretion variations in young stellar objects. Our analysis is based on multi-epoch high-resolution spectra for young stars in Tau-Aur and Cha I. For all stars, we obtain typically four spectra, covering timescales from hours to months. As proxies for the accretion rate, we use the H-alpha 10% width and the CaII-8662 line flux. We find that while the two quantities are correlated, their variability amplitude is not. Converted to accretion rates, the CaII fluxes indicate typical accretion rate changes of 0.35 dex, with 32% exceeding 0.5 dex, while H-alpha 10% width suggests changes of 0.65 dex, with 66% exceeding 0.5 dex. We conclude that CaII fluxes are a more robust quantitative indicator of accretion than H-alpha 10% width, and that intrinsic accretion rate changes typically do not exceed 0.5 dex on timescales of days to months. The maximum extent of the variability is reached after a few days, suggesting that rotation is the dominant cause of variability. We see a decline of the inferred accretion rates towards later spectral types, reflecting the dM/dt vs. M relationship. There is a gap between accretors and non-accretors, pointing to a rapid shutdown of accretion. We conclude that the ~2 orders of magnitude scatter in the dM/dt vs. M relationship is dominated by object-to-object scatter instead of intrinsic source variability.
226 - J. M. Gabor 2010
The bimodality in observed present-day galaxy colours has long been a challenge for hierarchical galaxy formation models, as it requires some physical process to quench (and keep quenched) star formation in massive galaxies. Here we examine phenomenological models of quenching by post-processing the star formation histories of galaxies from cosmological hydrodynamic simulations that reproduce observations of star-forming galaxies reasonably well. We consider recipes for quenching based on major mergers, halo mass thresholds, gas temperature thresholds, and variants thereof. We compare the resulting simulated star formation histories to observed g-r colour-magnitude diagrams and red and blue luminosity functions from SDSS. The merger and halo mass quenching scenarios each yield a distinct red sequence and blue cloud of galaxies that are in broad agreement with data, albeit only under rather extreme assumptions. In detail, however, the simulated red sequence slope and amplitude in each scenario is somewhat discrepant, perhaps traceable to low metallicities in simulated galaxies. Merger quenching produces more massive blue galaxies, earlier quenching, and more frosting of young stars; comparing to relevant data tends to favor merger over halo mass quenching. Although physically-motivated quenching models can produce a red sequence, interesting generic discrepancies remain that indicate that additional physics is required to reproduce the star formation and enrichment histories of red and dead galaxies.
Magnetic fields are ubiquitous in the Universe. The Suns magnetic field drives the solar wind and causes solar flares and other energetic surface phenomena that profoundly affect space weather here on Earth. The first magnetic field in a star other than the Sun was detected in 1947 in the peculiar A-type star 78 Vir. It is now known that the magnetic fields of the Sun and other low-mass stars (<1.5 solar masses) are generated in-situ by a dynamo process in their turbulent, convective envelopes. Unlike such stars, intermediate-mass and high-mass stars (>1.5 solar masses; referred to as massive stars here) have relatively quiet, radiative envelopes where a solar-like dynamo cannot operate. However, about 10% of them, including 78 Vir, have strong, large-scale surface magnetic fields whose origin has remained a major mystery. The massive star $tau$ Sco is a prominent member of this group and appears to be surprisingly young compared to other presumably coeval members of the Upper Scorpius association. Here, we present the first 3D magneto-hydrodynamical simulations of the coalescence of two massive main-sequence stars and 1D stellar evolution computations of the subsequent evolution of the merger product that can explain $tau$ Scos magnetic field, apparent youth and other observed characteristics. We argue that field amplification in stellar mergers is a general mechanism to form strongly-magnetised massive stars. These stars are promising progenitors of those neutron stars that host the strongest magnetic fields in the Universe, so-called magnetars, and that may give rise to some of the enigmatic fast radio bursts. Strong magnetic fields affect the explosions of core-collapse supernovae and, moreover, those magnetic stars that have rapidly-rotating cores at the end of their lives might provide the right conditions to power long-duration gamma-ray bursts and super-luminous supernovae.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا