Do you want to publish a course? Click here

Metastable Kinks in the Orbifold

95   0   0.0 ( 0 )
 Added by Manuel Toharia
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

We consider static configurations of bulk scalar fields in extra dimensional models in which the fifth dimension is an $S^1/Z_2$ orbifold. There may exist a finite number of such configurations, with total number depending on the size of the orbifold interval. We perform a detailed Sturm-Liouville stability analysis that demonstrates that all but the lowest-lying configurations - those with no nodes in the interval - are unstable. We also present a powerful general criterion with which to determine which of these nodeless solutions are stable. The detailed analysis underlying the results presented in this letter, and applications to specific models, are presented in a comprehensive companion paper.



rate research

Read More

We present a more detailed numerical investigation of the head-on collision of a two-kink/two-antikink system. We identified the escape of oscillon-like configurations as a pair of kinks of the standard $phi^4$ model moving apart from each other. New pieces of evidence support that the lump-like defects can emerge from the two-kinks interaction to form metastable configurations. Moreover, these configurations signalize the windows of escape that have a fractal structure similar to the $n$-bounce sequence when the kinks of $phi^4$ interact. As the last piece of the numerical experiment, we show that by perturbing conveniently a lump-like defect it is possible to recover another lump-like configuration as a metastable configuration.
216 - Bei Jia , Jiang-Hao Yu 2014
To solve the doublet-triplet splitting problem in SU(5) grand unified theories, we propose a four dimensional orbifold grand unified theory by acting Z2 on the SU(5) gauge group. Without an adjoint Higgs, the orbifold procedure breaks the SU(5) gauge symmetry down to the standard model gauge group, and removes the triplet component of the fundamental SU(5) Higgs. In the supersymmetric framework, we show that the orbifold procedure removes two triplet superfields of the Higgs multiplets and leaves us with the minimal supersymmetric standard model, which also solves the hierarchy problem and realizes gauge coupling unification. We also discuss possible UV completions of the orbifold theories.
Supersymmetry breaking in a metastable vacuum allows one to build simple and concrete models of gauge mediation. Generation of gaugino masses requires that R-symmetry be broken in this vacuum. In general, there are two possible ways to break R-symmetry, explicitly or spontaneously. We find that the MSSM phenomenology depends crucially on how this breaking occurs in the Hidden Sector. Explicit R-symmetry breaking models can lead to fairly standard gauge mediation, but we argue that in the context of ISS-type models this only makes sense if B=0 at the mediation scale, which leads to high tan(beta). If on the other hand, R-symmetry is broken spontaneously, then R-symmetry violating soft terms tend to be suppressed with respect to R-symmetry preserving ones, and one is led to a scenario with large scalar masses. These models interpolate between standard gauge mediation and split SUSY models. We provide benchmark points for the two scenarios. They demonstrate that the specific dynamics of the Hidden Sector -- the underlying nature of supersymmetry and R-symmetry breaking -- affects considerably the mass spectrum of the MSSM, and vice versa.
We study the scenario that conformal dynamics leads to metastable supersymmetry breaking vacua. At a high energy scale, the superpotential is not R-symmetric, and has a supersymmetric minimum. However, conformal dynamics suppresses several operators along renormalization group flow toward the infrared fixed point. Then we can find an approximately R-symmetric superpotential, which has a metastable supersymmetry breaking vacuum, and the supersymmetric vacuum moves far away from the metastable supersymmetry breaking vacuum. We show a 4D simple model. Furthermore, we can construct 5D models with the same behavior, because of the AdS/CFT dual.
We study effects of D-brane instantons wrapping rigid cycles on Z2*Z2 toroidal orbifold. We compute Majorana masses induced by rigid D-brane instantons and realize bimaximal mixing matrices in certain models. We can also derive more generic mass matrices in other models. The bimaximal mixing Majorana mass matrix has a possibility to explain observed mixing angles. We also compute the mu-term matrix among more than one pairs of Higgs fields induced by rigid D-brane instantons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا