Do you want to publish a course? Click here

The brachistochrone problem in open quantum systems

142   0   0.0 ( 0 )
 Added by I. Rotter
 Publication date 2007
  fields Physics
and research's language is English
 Authors Ingrid Rotter




Ask ChatGPT about the research

Recently, the quantum brachistochrone problem is discussed in the literature by using non-Hermitian Hamilton operators of different type. Here, it is demonstrated that the passage time is tunable in realistic open quantum systems due to the biorthogonality of the eigenfunctions of the non-Hermitian Hamilton operator. As an example, the numerical results obtained by Bulgakov et al. for the transmission through microwave cavities of different shape are analyzed from the point of view of the brachistochrone problem. The passage time is shortened in the crossover from the weak-coupling to the strong-coupling regime where the resonance states overlap and many branch points (exceptional points) in the complex plane exist. The effect can {it not} be described in the framework of standard quantum mechanics with Hermitian Hamilton operator and consideration of $S$ matrix poles.



rate research

Read More

In this brief comment we attempt to clarify the apparent discrepancy between the papers [1] and [2] on the quantum brachistochrone, namely whether it is possible to use a judicious mixture of Hermitian and non-Hermitian quantum mechanics to evade the standard lower limit on the time taken for evolution by a Hermitian Hamiltonian with given energy dispersion between two given states.
Entanglement is closely related to some fundamental features of the dynamics of composite quantum systems: quantum entanglement enhances the speed of evolution of certain quantum states, as measured by the time required to reach an orthogonal state. The concept of speed of quantum evolution constitutes an important ingredient in any attempt to determine the fundamental limits that basic physical laws impose on how fast a physical system can process or transmit information. Here we explore the relationship between entanglement and the speed of quantum evolution in the context of the quantum brachistochrone problem. Given an initial and a final state of a composite system we consider the amount of entanglement associated with the brachistochrone evolution between those states, showing that entanglement is an essential resource to achieve the alluded time-optimal quantum evolution.
We formulate a time-optimal approach to adiabatic quantum computation (AQC). A corresponding natural Riemannian metric is also derived, through which AQC can be understood as the problem of finding a geodesic on the manifold of control parameters. This geometrization of AQC is demonstrated through two examples, where we show that it leads to improved performance of AQC, and sheds light on the roles of entanglement and curvature of the control manifold in algorithmic performance.
71 - A. Carlini , A. Hosoya , T. Koike 2007
We present a general formalism based on the variational principle for finding the time-optimal quantum evolution of mixed states governed by a master equation, when the Hamiltonian and the Lindblad operators are subject to certain constraints. The problem reduces to solving first a fundamental equation (the {it quantum brachistochrone}) for the Hamiltonian, which can be written down once the constraints are specified, and then solving the constraints and the master equation for the Lindblad and the density operators. As an application of our formalism, we study a simple one-qubit model where the optimal Lindblad operators control decoherence and can be simulated by a tunable coupling with an ancillary qubit. It is found that the evolution through mixed states can be more efficient than the unitary evolution between given pure states. We also discuss the mixed state evolution as a finite time unitary evolution of the system plus an environment followed by a single measurement. For the simplest choice of the constraints, the optimal duration time for the evolution is an exponentially decreasing function of the environments degrees of freedom.
The Hamilton operator of an open quantum system is non-Hermitian. Its eigenvalues are, generally, complex and provide not only the energies but also the lifetimes of the states of the system. The states may couple via the common environment of scattering wavefunctions into which the system is embedded. This causes an {it external mixing} (EM) of the states. Mathematically, EM is related to the existence of singular (the so-called exceptional) points (EPs). The eigenfunctions of a non-Hermitian operator are biorthogonal, in contrast to the orthogonal eigenfunctions of a Hermitian operator. A quantitative measure for the ratio between biorthogonality and orthogonality is the phase rigidity of the wavefunctions. At and near an EP, the phase rigidity takes its minimum value. The lifetimes of two nearby eigenstates of a quantum system bifurcate under the influence of an EP. At the parameter value of maximum width bifurcation, the phase rigidity approaches the value one, meaning that the two eigenfunctions become orthogonal. However, the eigenfunctions are externally mixed at this parameter value. The S-matrix and therewith the cross section do contain, in the one-channel case, almost no information on the EM of the states. The situation is completely different in the case with two (or more) channels where the resonance structure is strongly influenced by the EM of the states and interesting features of non-Hermitian quantum physics are revealed. We provide numerical results for two and three nearby eigenstates of a non-Hermitian Hamilton operator which are embedded in one common continuum and influenced by two adjoining EPs. The results are discussed. They are of interest for an experimental test of the non-Hermitian quantum physics as well as for applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا