Do you want to publish a course? Click here

A large population of mid-infrared selected, obscured active galaxies in the Bootes field

152   0   0.0 ( 0 )
 Added by Ryan Hickox
 Publication date 2007
  fields Physics
and research's language is English
 Authors R. C. Hickox




Ask ChatGPT about the research

We identify a population of 640 obscured and 839 unobscured AGNs at redshifts 0.7<z<~3 using multiwavelength observations of the 9 deg^2 NOAO Deep Wide-Field Survey (NDWFS) region in Bootes. We select AGNs on the basis of Spitzer IRAC colors obtained by the IRAC Shallow Survey. Redshifts are obtained from optical spectroscopy or photometric redshift estimators. We classify the IR-selected AGNs as IRAGN 1 (unobscured) and IRAGN 2 (obscured) using a simple criterion based on the observed optical to mid-IR color, with a selection boundary of R-[4.5]=6.1, where R and [4.5] are the Vega magnitudes in the R and IRAC 4.5 micron bands, respectively. We verify this selection using X-ray stacking analyses with data from the Chandra XBootes survey, as well as optical photometry from NDWFS and spectroscopy from MMT/AGES. We show that (1) these sources are indeed AGNs, and (2) the optical/IR color selection separates obscured sources (with average N_H~3x10^22 cm^-2 obtained from X-ray hardness ratios, and optical colors and morphologies typical of galaxies) and unobscured sources (with no X-ray absorption, and quasar colors and morphologies), with a reliability of >~80%. The observed numbers of IRAGNs are comparable to predictions from previous X-ray, optical, and IR luminosity functions, for the given redshifts and IRAC flux limits. We observe a bimodal distribution in R-[4.5] color, suggesting that luminous IR-selected AGNs have either low or significant dust extinction, which may have implications for models of AGN obscuration.



rate research

Read More

Stern et al.(2012) presented a study of WISE selection of AGN in the 2 deg^2 COSMOS field, finding that a simple criterion W1-W2>=0.8 provides a highly reliable and complete AGN sample for W2<15.05, where the W1 and W2 passbands are centered at 3.4 and 4.6 microns, respectively. Here we extend this study using the larger 9 deg^2 NOAO Deep Wide-Field Survey Bootes field which also has considerably deeper WISE observations than the COSMOS field, and find that this simple color-cut significantly loses reliability at fainter fluxes. We define a modified selection criterion combining the W1-W2 color and the W2 magnitude to provide highly reliable or highly complete AGN samples for fainter WISE sources. In particular, we define a color-magnitude cut that finds 130+/-4 deg^-2 AGN candidates for W2<17.11 with 90% reliability. Using the extensive UV through mid-IR broad-band photometry available in this field, we study the spectral energy distributions of WISE AGN candidates. As expected, the WISE AGN selection is biased towards objects where the AGN dominates the bolometric luminosity output, and that it can identify highly obscured AGN. We study the distribution of reddening in the AGN sample and discuss a formalism to account for sample incompleteness based on the step-wise maximum-likelihood method of Efstathiou et al.(1988). The resulting dust obscuration distributions depend strongly on AGN luminosity, consistent with the trend expected for a Simpson (2005) receding torus. At L_AGN~3x10^44 erg/s, 29+/-7% of AGN are observed as Type 1, while at ~4x10^45 erg/s the fraction is 64+/-13%. The distribution of obscuration values suggests that dust in the torus is present as both a diffuse medium and in optically thick clouds.
We explore the kinematics of ionized gas via the [O III] $lambda$5007 emission lines in active galactic nuclei (AGN) selected on the basis of their mid-infrared (IR) emission, and split into obscured and unobscured populations based on their optical-IR colors. After correcting for differences in redshift distributions, we provide composite spectra of spectroscopically and photometrically defined obscured/Type 2 and unobscured/Type 1 AGN from 3500 to 7000 AA. The IR-selected obscured sources contain a mixture of narrow-lined Type 2 AGN and intermediate sources that have broad H$alpha$ emission and significantly narrower H$beta$. Using both [OIII] luminosities and AGN luminosities derived from optical-IR spectral energy distribution fitting, we find evidence for enhanced large-scale obscuration in the obscured sources. In matched bins of luminosity we find that the obscured population typically has broader, more blueshifted OIII emission than in the unobscured sample, suggestive of more powerful AGN-driven outflows. This trend is not seen in spectroscopically classified samples, and is unlikely to be entirely explained by orientation effects. In addition, outflow velocities increase from small to moderate AGN $E(B-V)$ values, before flattening out (as traced by FWHM) and even decreasing (as traced by blueshift). While difficult to fully interpret in a single physical model, due to both the averaging over populations and the spatially-averaged spectra, these results agree with previous findings that simple geometric unification models are insufficient for the IR-selected AGN population, and may fit into an evolutionary model for obscured and unobscured AGN.
56 - Daniel Stern 2004
Mid-infrared photometry provides a robust technique for identifying active galaxies. While the ultraviolet to mid-infrared continuum of normal galaxies is dominated by the composite stellar black body curve and peaks at approximately 1.6 microns, the ultraviolet to mid-infrared continuum of active galaxies is dominated by a power law. Consequently, with sufficient wavelength baseline, one can easily distinguish AGN from stellar populations. Mirroring the tendency of AGN to be bluer than galaxies in the ultraviolet, where galaxies (and stars) sample the blue, rising portion of stellar spectra, AGN tend to be redder than galaxies in the mid-infrared, where galaxies sample the red, falling portion of the stellar spectra. We report on Spitzer Space Telescope mid-infrared colors, derived from the IRAC Shallow Survey, of nearly 10,000 spectroscopically identified sources from the AGN and Galaxy Evolution Survey. Based on this spectroscopic sample, we find that simple mid-infrared color criteria provide remarkably robust separation of active galaxies from normal galaxies and Galactic stars, with over 80% completeness and less than 20% contamination. Considering only broad-lined AGN, these mid-infrared color criteria identify over 90% of spectroscopically identified quasars and Seyfert 1s. Applying these color criteria to the full imaging data set, we discuss the implied surface density of AGN and find evidence for a large population of optically obscured active galaxies.
We present the results of a program of optical and near-infrared spectroscopic follow-up of candidate Active Galactic Nuclei (AGN) selected in the mid-infrared. This survey selects both normal and obscured AGN closely matched in luminosity across a wide range, from Seyfert galaxies with bolometric luminosities L_bol~10^10L_sun, to highly luminous quasars (L_bol~10^14L_sun), and with redshifts from 0-4.3. Samples of candidate AGN were selected through mid-infrared color cuts at several different 24 micron flux density limits to ensure a range of luminosities at a given redshift. The survey consists of 786 candidate AGN and quasars, of which 672 have spectroscopic redshifts and classifications. Of these, 137 (20%) are type-1 AGN with blue continua, 294 (44%) are type-2 objects with extinctions A_V>~5 towards their AGN, 96 (14%) are AGN with lower extinctions (A_V~1) and 145 (22%) have redshifts, but no clear signs of AGN activity in their spectra. 50% of the survey objects have L_bol >10^12L_sun, in the quasar regime. We present composite spectra for type-2 quasars and for objects with no signs of AGN activity in their spectra. We also discuss the mid-infrared - emission-line luminosity correlation and present the results of cross-correlations with serendipitous X-ray and radio sources. The results show that: (1) obscured objects dominate the overall AGN population, (2) there exist mid-infrared selected AGN candidates which lack AGN signatures in their optical spectra, but have AGN-like X-ray or radio counterparts, and (3) X-ray and optical classifications of obscured and unobscured AGN often differ.
106 - C. Vignali 2007
Over the last few years, optical, mid-infrared and X-ray surveys have brought to light a significant number of candidate obscured AGN and, among them, many Type 2 quasars, the long-sought after big cousins of local Seyfert 2 galaxies. However, despite the large amount of multi-wavelength data currently available, a proper census and a panchromatic view of the obscured AGN/quasar population are still missing, mainly due to observational limitations. Here we provide a review of recent results on the identification of obscured AGN, focusing primarily on the population of Type 2 quasars selected in the optical band from the Sloan Digital Sky Survey.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا