Do you want to publish a course? Click here

How a liquid becomes a glass both on cooling and on heating

112   0   0.0 ( 0 )
 Added by Xinhui Lu
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The onset of structural arrest and glass formation in a concentrated suspension of silica nanoparticles in a water-lutidine binary mixture near its consolute point is studied by exploiting the near-critical fluid degrees of freedom to control the strength of an attraction between particles and multispeckle x-ray photon correlation spectroscopy to determine the particles collective dynamics. This model system undergoes a glass transition both on cooling and on heating, and the intermediate liquid realizes unusual logarithmic relaxations. How vitrification occurs for the two different glass transitions is characterized in detail and comparisons are drawn to recent theoretical predictions for glass formation in systems with attractive interactions.



rate research

Read More

The specific heat capacity $c_v$ of glass formers undergoes a hysteresis when subjected to a cooling-heating cycle, with a larger $c_v$ and a more pronounced hysteresis for fragile glasses than for strong ones. Here, we show that these experimental features, including the unusually large magnitude of $c_v$ of fragile glasses, are well reproduced by kinetic Monte Carlo and equilibrium study of a distinguishable particle lattice model (DPLM) incorporating a two-state picture of particle interactions. The large $c_v$ in fragile glasses is caused by a dramatic transfer of probabilistic weight from high-energy particle interactions to low-energy ones as temperature decreases.
In this study, micro-droplets are placed on thin, glassy, free-standing films where the Laplace pressure of the droplet deforms the free-standing film, creating a bulge. The films tension is modulated by changing temperature continuously from well below the glass transition into the melt state of the film. The contact angle of the liquid droplet with the planar film as well as the angle of the bulge with the film are measured and found to be consistent with the contact angles predicted by a force balance at the contact line.
In this paper, we report a novel experimental and theoretical study to examine the response of a soft capsule bathed in a liquid environment to sudden external impacts. Taking an egg yolk as an example, we found that the soft matter is not sensitive to translational impacts, but is very sensitive to rotational, especially decelerating-rotational impacts, during which the centrifugal force and the shape of the membrane together play a critical role causing the deformation of the soft object. This finding, as the first study of its kind, reveals the fundamental physics behind the motion and deformation of a membrane-bound soft object, e.g., egg yolk, cells, soft brain matter, etc., in response to external impacts.
80 - Bo Li , Kai Lou , Walter Kob 2020
The solidity of glassy materials is believed to be due to the cage formed around each particle by its neighbors, but in reality the details of cage-formation remain elusive [1-4]. This cage starts to be formed at the onset temperature/density at which the normal liquid begins to show the first signs of glassy dynamics. To study cage-formation we use here focused lasers to produce a local perturbation of the structure on the particle level in 2D colloidal suspensions and monitor by means of video microscopy the systems non-linear dynamic response. All observables we probed show a response which is non-monotonic as a function of the packing fraction, peaking at the onset density. Video microscopic images reveal that this maximum response is due to the buildup of domains with cooperative dynamics that become increasingly rigid and start to dominate the particle dynamics. This proof-of-concept from microrheological deformation demonstrates that in this glass-forming liquid cage formation is directly related to the merging of these domains, thus elucidating the first step in glass-formation [1, 5].
Using computer simulations, we establish that the structure of a supercooled binary atomic liquid mixture consists of common neighbour structures similar to those found in the equilibrium crystal phase, a Laves structure. Despite the large accumulation of crystal-like structure, we establish that the supercooled liquid represents a true metastable liquid and that liquid can borrow crystal structure without being destabilized. We consider whether this feature might be the origin of all instances of liquids of a strongly favoured local structure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا