No Arabic abstract
Nuclear spin-dependent parity violation arises from weak interactions between electrons and nucleons, and from nuclear anapole moments. We outline a method to measure such effects, using a Stark-interference technique to determine the mixing between opposite-parity rotational/hyperfine levels of ground-state molecules. The technique is applicable to nuclei over a wide range of atomic number, in diatomic species that are theoretically tractable for interpretation. This should provide data on anapole moments of many nuclei, and on previously unmeasured neutral weak couplings.
We propose the measurement of net $Lambda$ and $bar{Lambda}$ helicity, correlated event-by-event with the magnitude and sign of charge separation along the events magnetic field direction, as a probe to investigate the Chiral Magnetic Effect in Heavy-Ion Collisions. With a simple simulation model of heavy-ion events that includes effects of Local Parity Violation, we estimate the experimental correlation signal that could be expected at RHIC given the results of previous measurements that are sensitive to the CME.
Employing the relativistic coupled-cluster method, comparative studies of the parity non-conserving electric dipole amplitudes for the $7s ^2S_{1/2} rightarrow 6d ^2D_{5/2}$ transitions in $^{210}$Fr and $^{211}$Fr isotopes have been carried out. It is found that these transition amplitudes, sensitive only to the nuclear spin dependent effects, are enhanced by more than 3 orders compared to the low-lying $S-D_{5/2}$ transitions in Ba$^+$ and Ra$^+$ owing to the very large contributions from the electron core-polarization effects in Fr. This translates to a relatively large and, in principle, measurable induced light shift, which would be a signature of nuclear spin dependent parity nonconservation that is dominated by the nuclear anapole moment in a heavy atom like Fr. A plausible scheme to measure this quantity using the Cyclotron and Radioisotope Center (CYRIC) facility at Tohoku University has been outlined.
The parameter $W_mathrm{a}$, which characterizes nuclear spin-dependent parity violation effects within the effective molecular spin-rotational Hamiltonian, was computed for the electronic ground state of radium fluoride (RaF) and found to be one of the largest absolute values predicted so far. These calculations were performed with the complex generalised Hartree-Fock method within a two-component (quasi-relativistic) zeroth-order regular approximation framework. Peculiarities of the molecular electronic structure of RaF lead to highly diagonal Franck-Condon matrices between vibrational states of the electronic ground and first excited states, which renders the molecule in principle suitable for direct laser cooling. As a trapped gas of cold molecules offers a superior coherence time, RaF can be considered a promising candidate for high-precision spectroscopic experiments aimed at the search of molecular parity-violation effects.
GRETA, the Gamma-Ray Energy Tracking Array, is an array of highly-segmented HPGe detectors designed to track gamma-rays emitted in beam-physics experiments. Its high detection efficiency and state-of-the-art position resolution make it well-suited for imaging applications. In this paper, we use simulated imaging data to illustrate how imaging can be applied to nuclear lifetime measurments. This approach can offer multiple benefits over traditional lifetime techniques such as RDM.
We present a brief review of our progress towards measuring parity violation in heavy-metal chiral complexes using mid-infrared Ramsey interferometry. We discuss our progress addressing the main challenges, including the development of buffer-gas sources of slow, cold polyatomic molecules, and the frequency-stabilisation of quantum cascade lasers calibrated using primary frequency standards. We report investigations on achiral test species of which promising chiral derivatives have been synthesized.