GRETA, the Gamma-Ray Energy Tracking Array, is an array of highly-segmented HPGe detectors designed to track gamma-rays emitted in beam-physics experiments. Its high detection efficiency and state-of-the-art position resolution make it well-suited for imaging applications. In this paper, we use simulated imaging data to illustrate how imaging can be applied to nuclear lifetime measurments. This approach can offer multiple benefits over traditional lifetime techniques such as RDM.
GRETA, the Gamma-Ray Energy Tracking Array, is an array of highly-segmented HPGe detectors designed to track gamma-rays emitted in beam-physics experiments. Its high detection efficiency and state-of-the-art position resolution enable it to reject Compton background and also sequence detected interactions via Compton kinematics. In this paper, we use simulated photon tracks to estimate how well interactions can be sequenced in the GRETA detector. This lays the groundwork for subsequent gamma-ray imaging applications such as nuclear lifetime measurements.
The hyperspectral X-ray imaging has been long sought in various fields from material analysis to medical diagnosis. Here we propose a new semiconductor detector structure to realize energy-resolved imaging at potentially low cost. The working principle is based on the strong energy-dependent absorption of X-ray in solids. Namely, depending on the energy, X-ray photons experience dramatically different attenuation. An array or matrix of semiconductor cells is to map the X-ray intensity along its trajectory. The X-ray spectrum could be extracted from a Laplace like transform or even a supervised machine learning. We demonstrated an energy-resolved X-ray detection with a regular silicon camera.
The Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) , composed of two small satellites, is a new mission to monitor the Gamma-Ray Bursts (GRBs) coincident with gravitational wave events with a FOV of 100% all-sky. GECAM detects and localizes 6 keV-5 MeV GRBs via 25 compact and novel Gamma-Ray Detectors (GRDs). Each GRD module is comprised of a LaBr3:Ce scintillator, SiPM array and preamplifier. A large dynamic range is achieved by the high gain and low gain channels of the preamplifier. This article discusses the performance of a GRD prototype which includes a set of radioactive sources in the range of 5.9-1332.5 keV. The energy resolution and energy to ADC channel conversion of the GRD module are also discussed. The typical energy resolution is 5.3% at 662 keV (FWHM) which meets the relevant requirements (< 8% at 662 keV). The energy calibration capability is evaluated by the measured intrinsic activity of LaBr3:Ce and Geant4 simulation results. The test results demonstrate the feasibility of the GECAM GRD design.
UCGretina, a GEANT4 simulation of the GRETINA gamma-ray tracking array of highly-segmented high-purity germanium detectors is described. We have developed a model of the array, in particular of the Quad Module and the capsules, that gives good agreement between simulated and measured photopeak efficiencies over a broad range of gamma-ray energies and reproduces the shape of the measured Compton continuum. Both of these features are needed in order to accurately extract gamma-ray yields from spectra collected in in-beam gamma-ray spectroscopy measurements with beams traveling at $v/c gtrsim 0.3$ at the National Superconducting Cyclotron Laboratory and the Facility for Rare Isotope Beams. In the process of developing the model, we determined that millimeter-scale layers of passive germanium surrounding the active volumes of the simulated crystals must be included in order to reproduce measured photopeak efficiencies. We adopted a simple model of effective passive layers and developed heuristic methods of determining passive-layer thicknesses by comparison of simulations and measurements for a single crystal and for the full array. Prospects for future development of the model are discussed.
A novel algorithm for the discrimination of neutron and {gamma}-ray with wavelet transform modulus maximum (WTMM) in an organic scintillation has been investigated. Voltage pulses arising from a BC501A organic liquid scintillation detector in a mixed radiation field have been recorded with a fast digital sampling oscilloscope. The performances of most pulse shape discrimination methods in scintillation detection systems using time-domain features of the pulses are affected intensively by noise. However, the WTMM method using frequency-domain features exhibits a strong insensitivity to noise and can be used to discriminate neutron and {gamma}-ray events based on their different asymptotic decay trend between the positive modulus maximum curve and the negative modulus maximum curve in the scale-space plane. This technique has been verified by the corresponding mixed-field data assessed by the time-of-flight (TOF) method and the frequency gradient analysis (FGA) method. It is shown that the characterization of neutron and gamma achieved by the discrimination method based on WTMM is consistent with that afforded by TOF and better than FGA. Moreover, because the WTMM method is it self presented to eliminate the noise, there is no need to make any pretreatment for the pulses.