Do you want to publish a course? Click here

Photometric Calibration of the Swift Ultraviolet/Optical Telescope

131   0   0.0 ( 0 )
 Added by Mathew James Page
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the photometric calibration of the Swift UltraViolet/Optical Telescope (UVOT) which includes: optimum photometric and background apertures, effective area curves, colour transformations, conversion factors for count rates to flux, and the photometric zero points (which are accurate to better than 4 per cent) for each of the seven UVOT broadband filters. The calibration was performed with observations of standard stars and standard star fields that represent a wide range of spectral star types. The calibration results include the position dependent uniformity, and instrument response over the 1600-8000A operational range. Because the UVOT is a photon counting instrument, we also discuss the effect of coincidence loss on the calibration results. We provide practical guidelines for using the calibration in UVOT data analysis. The results presented here supersede previous calibration results.



rate research

Read More

The Ultraviolet/Optical Telescope (UVOT) is one of three instruments onboard the Swift observatory. The photometric calibration has been published, and this paper follows up with details on other aspects of the calibration including a measurement of the point spread function with an assessment of the orbital variation and the effect on photometry. A correction for large scale variations in sensitivity over the field of view is described, as well as a model of the coincidence loss which is used to assess the coincidence correction in extended regions. We have provided a correction for the detector distortion and measured the resulting internal astrometric accuracy of the UVOT, also giving the absolute accuracy with respect to the International Celestial Reference System. We have compiled statistics on the background count rates, and discuss the sources of the background, including instrumental scattered light. In each case we describe any impact on UVOT measurements, whether any correction is applied in the standard pipeline data processing or whether further steps are recommended.
The dynamic range of photon counting micro-channel-plate (MCP) intensified charged-coupled device (CCD) instruments such as the Swift Ultraviolet/Optical Telescope (UVOT) and the XMM-Newton Optical Monitor (XMM-OM) is limited at the bright end by coincidence loss, the superposition of multiple photons in the individual frames recorded by the CCD. Photons which arrive during the brief period in which the image frame is transferred for read out of the CCD are displaced in the transfer direction in the recorded images. For sufficiently bright sources, these displaced counts form read-out streaks. Using UVOT observations of Tycho-2 stars, we investigate the use of these read-out streaks to obtain photometry for sources which are too bright (and hence have too much coincidence loss) for normal aperture photometry to be reliable. For read-out-streak photometry, the bright-source limiting factor is coincidence loss within the MCPs rather than the CCD. We find that photometric measurements can be obtained for stars up to 2.4 magnitudes brighter than the usual full-frame coincidence-loss limit by using the read-out streaks. The resulting bright-limit Vega magnitudes in the UVOT passbands are UVW2=8.80, UVM2=8.27, UVW1=8.86, u=9.76, b=10.53, v=9.31 and White=11.71; these limits are independent of the windowing mode of the camera. We find that a photometric precision of 0.1 mag can be achieved through read-out streak measurements. A suitable method for the measurement of read-out streaks is described and all necessary calibration factors are given.
We present an updated calibration of the Swift/UVOT broadband ultraviolet (uvw1, uvm2, and uvw2) filters. The new calibration accounts for the ~1% per year decline in the UVOT sensitivity observed in all filters, and makes use of additional calibration sources with a wider range of colours and with HST spectrophotometry. In this paper we present the new effective area curves and instrumental photometric zeropoints and compare with the previous calibration.
We present the calibration of the Swift UVOT grisms, of which there are two, providing low-resolution field spectroscopy in the ultraviolet and optical bands respectively. The UV grism covers the range 1700-5000 Angstrom with a spectral resolution of 75 at 2600 Angstrom for source magnitudes of u=10-16 mag, while the visible grism covers the range 2850-6600 Angstrom with a spectral resolution of 100 at 4000 Angstrom for source magnitudes of b=12-17 mag. This calibration extends over all detector positions, for all modes used during operations. The wavelength accuracy (1-sigma) is 9 Angstrom in the UV grism clocked mode, 17 Angstrom in the UV grism nominal mode and 22 Angstrom in the visible grism. The range below 2740 Angstrom in the UV grism and 5200 Angstrom in the visible grism never suffers from overlapping by higher spectral orders. The flux calibration of the grisms includes a correction we developed for coincidence loss in the detector. The error in the coincidence loss correction is less than 20%. The position of the spectrum on the detector only affects the effective area (sensitivity) by a few percent in the nominal modes, but varies substantially in the clocked modes. The error in the effective area is from 9% in the UV grism clocked mode to 15% in the visible grism clocked mode .
The UV/Optical Telescope (UVOT) is one of three instruments flying aboard the Swift Gamma-ray Observatory. It is designed to capture the early (approximately 1 minute) UV and optical photons from the afterglow of gamma-ray bursts in the 170-600 nm band as well as long term observations of these afterglows. This is accomplished through the use of UV and optical broadband filters and grisms. The UVOT has a modified Ritchey-Chretien design with micro-channel plate intensified charged-coupled device detectors that record the arrival time of individual photons and provide sub-arcsecond positioning of sources. We discuss some of the science to be pursued by the UVOT and the overall design of the instrument.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا