No Arabic abstract
We consider the Randall-Sundrum brane-world model with bulk-brane energy transfer where the Einstein-Hilbert action is modified by curvature correction terms: a four-dimensional scalar curvature from induced gravity on the brane, and a five-dimensional Gauss-Bonnet curvature term. It is remarkable that these curvature terms will not change the dynamics of the brane universe at low energy. Parameterizing the energy transfer and taking the dark radiation term into account, we find that the phantom divide of the equation of state of effective dark energy could be crossed, without the need of any new dark energy components. Fitting the two most reliable and robust SNIa datasets, the 182 Gold dataset and the Supernova Legacy Survey (SNLS), our model indeed has a small tendency of phantom divide crossing for the Gold dataset, but not for the SNLS dataset. Furthermore, combining the recent detection of the SDSS baryon acoustic oscillations peak (BAO) with lower matter density parameter prior, we find that the SNLS dataset also mildly favors phantom divide crossing.
We study the cosmology of the Randall-Sundrum brane-world where the Einstein-Hilbert action is modified by curvature correction terms: a four-dimensional scalar curvature from induced gravity on the brane, and a five-dimensional Gauss-Bonnet curvature term. The combined effect of these curvature corrections to the action removes the infinite-density big bang singularity, although the curvature can still diverge for some parameter values. A radiation brane undergoes accelerated expansion near the minimal scale factor, for a range of parameters. This acceleration is driven by the geometric effects, without an inflaton field or negative pressures. At late times, conventional cosmology is recovered.
We study a holographic model for the dark energy considered recently in the literature which postulates an energy density $rho sim R$, where $R$ is the Ricci scalar curvature. We obtain a cosmological scenario that comes from considering two non-interacting fluids along a reasonable Ansatz for the cosmic coincidence parameter. We adjust the involved parameters in the model according to the observational data and we show that the equation of state for the dark energy experience a cross through the -1 barrier. In addition, we find a disagreement in these parameters with respect to an approach from a scalar field theory.
The phantom brane has several important distinctive features: (i) Its equation of state is phantom-like, but there is no future `big rip singularity, (ii) the effective cosmological constant on the brane is dynamically screened, because of which the expansion rate is {em smaller} than that in $Lambda$CDM at high redshifts. In this paper, we constrain the Phantom braneworld using distance measures such as Type Ia supernovae (SNeIa), Baryon Acoustic Oscillations (BAO), and the compressed Cosmic Microwave Background (CMB) data. We find that the simplest braneworld models provide a good fit to the data. For instance, BAO +SNeIa data can be accommodated by the braneworld for a large region in parameter space $0 < Omega_l < 0.3$ at $1sigma$. The Hubble parameter can be as high as $H_0 < 78$ km/s/Mpc, and the effective equation of state at present can show phantom-like behaviour with $w_0 < -1.2$ at $1sigma$. We note a correlation between $H_0$ and $w_0$, with higher values of $H_0$ leading to a lower, and more phantom-like, value of $w_0$. Inclusion of CMB data provides tighter constraints $Omega_l < 0.1$. (Here $Omega_l$ encodes the ratio of the five and four dimensional Planck mass.) The Hubble parameter in this case is more tightly constrained to $H_0 < 71$ km/s/Mpc, and the effective equation of state to $w_0 < -1.1$. Interestingly, we find that the universe is allowed be closed or open, with $-0.5 < Omega_{kappa} < 0.5$, even on including the compressed CMB data. There appears to be some tension in the low and high $z$ BAO data which may either be resolved by future data, or act as a pointer to interesting new cosmology.
We study some cosmological features of Tsallis holographic dark energy (THDE) in Cyclic, DGP and RS II braneworlds. In our setup, a flat FRW universe is considered filled by a pressureless source and THDE with the Hubble radius as the IR cutoff, while there is no interaction between them. Our result shows that although suitable behavior can be obtained for the system parameters such as the deceleration parameter, the models are not always stable during the cosmic evolution at the classical level.
We consider a five-dimensional brane world scenario where the fifth dimension is compactified on $S^1/Z_2$. We show that the familiar four-dimensional cosmology on our brane is easily recovered during a primordial stage of inflation if supersymmetry is exploited. Even if some vacuum energy density appears localized on our three brane, heavy supersymmetric bulk fields adjust themselves and acquire a nontrivial configuration along the extra-dimension. This phenomenon redistributes uniformly the energy density across the bulk and the resulting energy-momentum tensor does not display any singularity associated to the initial localized energy density on our three-brane. No jumps across the brane are present for the derivatives of the metric and Einsteins equations are solved by constant solutions along the fifth dimension. Our findings make it clear that cosmological phenomena in the supersymmetric brane world scenario must be studied taking properly into account bulk supersymmetric states. This comment is particularly relevant when applied to (super)gravity since in supersymmetric brane world scenarios, even though chiral matter and gauge fields may be restricted to live on boundaries, gravity multiplets always propagate in the bulk.