No Arabic abstract
We consider a five-dimensional brane world scenario where the fifth dimension is compactified on $S^1/Z_2$. We show that the familiar four-dimensional cosmology on our brane is easily recovered during a primordial stage of inflation if supersymmetry is exploited. Even if some vacuum energy density appears localized on our three brane, heavy supersymmetric bulk fields adjust themselves and acquire a nontrivial configuration along the extra-dimension. This phenomenon redistributes uniformly the energy density across the bulk and the resulting energy-momentum tensor does not display any singularity associated to the initial localized energy density on our three-brane. No jumps across the brane are present for the derivatives of the metric and Einsteins equations are solved by constant solutions along the fifth dimension. Our findings make it clear that cosmological phenomena in the supersymmetric brane world scenario must be studied taking properly into account bulk supersymmetric states. This comment is particularly relevant when applied to (super)gravity since in supersymmetric brane world scenarios, even though chiral matter and gauge fields may be restricted to live on boundaries, gravity multiplets always propagate in the bulk.
We revisit the issue of gravitational contributions to soft masses in five-dimensional sequestered models. We point out that, unlike for the case of F-type supersymmetry breaking, for D-type breaking these effects generically give positive soft masses squared for the sfermions. This drastically improves model building. We discuss the phenomenological implications of our result.
We emphasize the necessity of a delicate interplay between the gauge and gravitational sectors of five-dimensional brane worlds in creating phenomenologically relevant vacua. We discuss locally supersymmetric brane worlds with unflipped and flipped fermionic boundary conditions and with matter on the branes. We point out that a natural separation between the gauge and gravity sectors, very difficult in models with true extra dimensions, may be achieved in 4d models with deconstructed dimensions.
Brane supersymmetry breaking is a peculiar phenomenon that can occur in perturbative orientifold vacua. It results from the simultaneous presence, in the vacuum, of non-mutually BPS sets of BPS branes and orientifolds, which leave behind a net tension and thus a runaway potential, but no tachyons. In the simplest ten-dimensional realization, the low-lying modes combine the closed sector of type-I supergravity with an open sector including USp(32) gauge bosons, fermions in the antisymmetric 495 and an additional singlet playing the role of a goldstino. We review some properties of this system and of other non-tachyonic models in ten dimensions with broken supersymmetry, and we illustrate some puzzles that their very existence raises, together with some applications that they have stimulated.
We study the cosmology of the Randall-Sundrum brane-world where the Einstein-Hilbert action is modified by curvature correction terms: a four-dimensional scalar curvature from induced gravity on the brane, and a five-dimensional Gauss-Bonnet curvature term. The combined effect of these curvature corrections to the action removes the infinite-density big bang singularity, although the curvature can still diverge for some parameter values. A radiation brane undergoes accelerated expansion near the minimal scale factor, for a range of parameters. This acceleration is driven by the geometric effects, without an inflaton field or negative pressures. At late times, conventional cosmology is recovered.
In this paper we study dynamical supersymmetry breaking in absence of gravity with the matter content of the minimal supersymmetric standard model. The hidden sector of the theory is a strongly coupled gauge theory, realized in terms of microscopic variables which condensate to form mesons. The supersymmetry breaking scalar potential combines F, D terms with instanton generated interactions in the Higgs-mesons sector. We show that for a large region in parameter space the vacuum breaks in addition to supersymmetry also electroweak gauge symmetry. We furthermore present local D-brane configurations that realize these supersymmetry breaking patterns.