No Arabic abstract
We study the properties of a one-dimensional (1D) gas of fermions trapped in a lattice by means of the density matrix renormalization group method, focusing on the case of unequal spin populations, and strong attractive interaction. In the low density regime, the system phase-separates into a well defined superconducting core and a fully polarized metallic cloud surrounding it. We argue that the superconducting phase corresponds to a 1D analogue of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, with a quasi-condensate of tightly bound bosonic pairs with a finite center-of-mass momentum that scales linearly with the magnetization. In the large density limit, the system allows for four phases: in the core, we either find a Fock state of localized pairs or a metallic shell with free spin-down fermions moving in a fully filled background of spin-up fermions. As the magnetization increases, the Fock state disappears to give room for a metallic phase, with a partially polarized superconducting FFLO shell and a fully polarized metallic cloud surrounding the core.
We study the interplay between the long- and short-range interaction of a one-dimensional optical lattice system of two-component dipolar fermions by using the density matrix renormalization group method. The atomic density profile, pairing-pairing correlation function, and the compressibility are calculated in the ground state, from which we identify the parameter region of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairing state, half-metal (HM) state, FFLO-HM state, and the normal polarized state, and thus the phase diagram in the coordinates of the long- and short-range interaction strength. The effect of the long-range dipolar interaction on the FFLO state is discussed in details. We find that the long-range part of the dipole-dipole interaction does not sweep away the FFLO superconducting region that is driven by the short-range interaction in the Hubbard model, and thus the FFLO state survives in the wide parameter space of the long-range interaction, polarization and the filling.
We investigate the effect of the anisotropy between the s-wave scattering lengths of a three-component atomic Fermi gas loaded into a one-dimensional optical lattice. We find four different phases which support trionic instabilities made of bound states of three fermions. These phases distinguish themselves by the relative phases between the 2$k_F$ atomic density waves fluctuations of the three species. At small enough densities or strong anisotropies we give further evidences for a decoupling and the stabilization of more conventional BCS phases. Finally our results are discussed in light of a recent experiment on $^{6}$Li atoms.
Pairing of fermions is ubiquitous in nature and it is responsible for a large variety of fascinating phenomena like superconductivity, superfluidity of $^3$He, the anomalous rotation of neutron stars, and the BEC-BCS crossover in strongly interacting Fermi gases. When confined to two dimensions, interacting many-body systems bear even more subtle effects, many of which lack understanding at a fundamental level. Most striking is the, yet unexplained, effect of high-temperature superconductivity in cuprates, which is intimately related to the two-dimensional geometry of the crystal structure. In particular, the questions how many-body pairing is established at high temperature and whether it precedes superconductivity are crucial to be answered. Here, we report on the observation of pairing in a harmonically trapped two-dimensional atomic Fermi gas in the regime of strong coupling. We perform momentum-resolved photoemission spectroscopy, analogous to ARPES in the solid state, to measure the spectral function of the gas and we detect a many-body pairing gap above the superfluid transition temperature. Our observations mark a significant step in the emulation of layered two-dimensional strongly correlated superconductors using ultracold atomic gases.
We investigate the response to radio-frequency driving of an ultracold gas of attractively interacting fermions in a one-dimensional optical lattice. We study the system dynamics by monitoring the driving-induced population transfer to a third state, and the evolution of the momentum density and pair distributions. Depending on the frequency of the radio-frequency field, two different dynamical regimes emerge when considering the evolution of the third level population. One regime exhibits (off)resonant many-body oscillations reminiscent of Rabi oscillations in a discrete two-level system, while the other displays a strong linear rise. Within this second regime, we connect, via linear response theory, the extracted transfer rate to the system single-particle spectral function, and infer the nature of the excitations from Bethe ansatz calculations. In addition, we show that this radio-frequency technique can be employed to gain insights into this many-body system coupling mechanism away from equilibrium. This is done by monitoring the momentum density redistributions and the evolution of the pair correlations during the drive. Capturing such non-equilibrium physics goes beyond a linear response treatment, and is achieved here by conducting time-dependent matrix product state simulations.
The recent discovery of superconductivity under high pressure in the ladder compound BaFe$_2$S$_3$ has opened a new field of research in iron-based superconductors with focus on quasi one-dimensional geometries. In this publication, using the Density Matrix Renormalization Group technique, we study a two-orbital Hubbard model defined in one dimensional chains. Our main result is the presence of hole binding tendencies at intermediate Hubbard $U$ repulsion and robust Hund coupling $J_H/U=0.25$. Binding does not occur neither in weak coupling nor at very strong coupling. The pair-pair correlations that are dominant near half-filling, or of similar strength as the charge and spin correlation channels, involve hole-pair operators that are spin singlets, use nearest-neighbor sites, and employ different orbitals for each hole. The Hund coupling strength, presence of robust magnetic moments, and antiferromagnetic correlations among them are important for the binding tendencies found here.