Do you want to publish a course? Click here

Pairing Tendencies in a Two-orbital Hubbard Model in One Dimension

89   0   0.0 ( 0 )
 Added by Niravkumar Patel
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The recent discovery of superconductivity under high pressure in the ladder compound BaFe$_2$S$_3$ has opened a new field of research in iron-based superconductors with focus on quasi one-dimensional geometries. In this publication, using the Density Matrix Renormalization Group technique, we study a two-orbital Hubbard model defined in one dimensional chains. Our main result is the presence of hole binding tendencies at intermediate Hubbard $U$ repulsion and robust Hund coupling $J_H/U=0.25$. Binding does not occur neither in weak coupling nor at very strong coupling. The pair-pair correlations that are dominant near half-filling, or of similar strength as the charge and spin correlation channels, involve hole-pair operators that are spin singlets, use nearest-neighbor sites, and employ different orbitals for each hole. The Hund coupling strength, presence of robust magnetic moments, and antiferromagnetic correlations among them are important for the binding tendencies found here.



rate research

Read More

In strongly correlated multi-orbital systems, various ordered phases appear. In particular, the orbital order in iron-based superconductors attracts much attention since it is considered to be the origin of the nematic state. In order to clarify the essential condition for realizing orbital orders, we study simple two-orbital ($d_{xz}$, $d_{yz}$) Hubbard model. We find that the orbital order, which corresponds to the nematic order, appears due to the vertex corrections even in the two-orbital model. Thus, $d_{xy}$ orbital is not essential to realize the nematic orbital order. The obtained orbital order depends on the orbital dependence and the topology of fermi surfaces. We also find that another type of orbital order, which is rotated $45^circ$, appears in the heavily hole-doped case.
We rigorously prove that an extended Hubbard model with attraction in two dimensions has an unconventional pairing ground state for any electron filling. The anisotropic spin-0 or anisotropic spin-1 pairing symmetry is realized, depending on a phase parameter characterizing the type of local attractive interactions. In both cases the ground state is unique. It is also shown that in a special case, where there are no electron hopping terms, the ground state has Ising-type Neel order at half-filling, when on-site repulsion is furthermore added. Physical applications are mentioned.
We address some open questions regarding the phase diagram of the one-dimensional Hubbard model with asymmetric hopping coefficients and balanced species. In the attractive regime we present a numerical study of the passage from on-site pairing dominant correlations at small asymmetries to charge-density waves in the region with markedly different hopping coefficients. In the repulsive regime we exploit two analytical treatments in the strong- and weak-coupling regimes in order to locate the onset of phase separation at small and large asymmetries respectively.
By employing unbiased numerical methods, we show that pulse irradiation can induce unconventional superconductivity even in the Mott insulator of the Hubbard model. The superconductivity found here in the photoexcited state is due to the $eta$-pairing mechanism, characterized by staggered pair-density-wave oscillations in the off-diagonal long-range correlation, and is absent in the ground-state phase diagram; i.e., it is induced neither by a change of the effective interaction of the Hubbard model nor by simple photocarrier doping. Because of the selection rule, we show that the nonlinear optical response is essential to increase the number of $eta$ pairs and thus enhance the superconducting correlation in the photoexcited state. Our finding demonstrates that nonequilibrium many-body dynamics is an alternative pathway to access a new exotic quantum state that is absent in the ground-state phase diagram and also provides an alternative mechanism for enhancing superconductivity.
The two-dimensional attractive Hubbard model is studied in the weak to intermediate coupling regime by employing a non-perturbative approach. It is first shown that this approach is in quantitative agreement with Monte Carlo calculations for both single-particle and two-particle quantities. Both the density of states and the single-particle spectral weight show a pseudogap at the Fermi energy below some characteristic temperature T*, also in good agreement with quantum Monte Carlo calculations. The pseudogap is caused by critical pairing fluctuations in the low-temperature renormalized classical regime $omega < T$ of the two-dimensional system. With increasing temperature the spectral weight fills in the pseudogap instead of closing it and the pseudogap appears earlier in the density of states than in the spectral function. Small temperature changes around T* can modify the spectral weight over frequency scales much larger than temperature. Several qualitative results for the s-wave case should remain true for d-wave superconductors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا