Do you want to publish a course? Click here

Modulator noise suppression in the LISA Time-Delay Interferometric combinations

386   0   0.0 ( 0 )
 Added by Massimo Tinto
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We previously showed how the measurements of some eighteen time series of relative frequency or phase shifts could be combined (1) to cancel the phase noise of the lasers, (2) to cancel the Doppler fluctuations due to non-inertial motions of the six optical benches, and (3) to remove the phase noise of the onboard reference oscillators required to track the photodetector fringes, all the while preserving signals from passinggravitational waves. Here we analyze the effect of the additional noise due to the optical modulators used for removing the phase fluctuations of the onboard reference oscillators. We use a recently measured noise spectrum of an individual modulator to quantify the contribution of modulator noise to the first and second-generation Time-Delay Interferometric (TDI) combinations as a function of the modulation frequency. We show that modulator noise can be made smaller than the expected proof-mass acceleration and optical-path noises if the modulation frequencies are larger than $approx 682$ MHz in the case of the unequal-arm Michelson TDI combination $X_1$, $approx 1.08$ GHz for the Sagnac TDI combination $alpha_1$, and $approx 706$ MHz for the symmetrical Sagnac TDI combination $zeta_1$. These modulation frequencies are substantially smaller than previously estimated and may lead to less stringent requirements on the LISAs oscillator noise calibration subsystem.



rate research

Read More

The ongoing development of the space-based laser interferometer missions is aiming at unprecedented gravitational wave detections in the millihertz frequency band. The spaceborne nature of the experimental setups leads to a degree of subtlety regarding the otherwise overwhelming laser frequency noise. The cancellation of the latter is accomplished through the time-delay interferometry technique. Moreover, to eventually achieve the desired noise level, the phase fluctuations of the onboard ultra-stable oscillator must also be suppressed. This can be fulfilled by introducing sideband signals which, in turn, give rise to an improved cancellation scheme accounting for the clock-jitter noise. Nonetheless, for certain Sagnac-type interferometry layouts, it can be shown that resultant residual clock noise found in the literature can be further improved. In this regard, we propose refined cancellation combinations for two specific clock noise patterns. This is achieved by employing the so-called geometric time-delay interferometry interpretation. It is shown that for specific Sagnac combinations, the residual noise diminishes significantly to attain the experimentally acceptable sensitivity level. Moreover, we argue that the derived combination, in addition to the existing ones in the literature, furnishes a general-purpose cancellation scheme that serves for arbitrary time-delay interferometry combinations. The subsequential residual noise will only involve factors proportional to the commutators between the delay operators. Our arguments reside in the form of the clock noise expressed in terms of the coefficients of the generating set of the first module of syzygies, the linear combination of which originally constitutes the very solution for laser noise reduction.
Time-delay signature (TDS) suppression of semiconductor lasers with external optical feedback is necessary to ensure the security of chaos-based secure communications. Here we numerically and experimentally demonstrate a technique to effectively suppress the TDS of chaotic lasers using quantum noise. The TDS and dynamical complexity are quantified using the autocorrelation function and normalized permutation entropy at the feedback delay time, respectively. Quantum noise from quadrature fluctuations of vacuum state is prepared through balanced homodyne measurement. The effects of strength and bandwidth of quantum noise on chaotic TDS suppression and complexity enhancement are investigated numerically and experimentally. Compared to the original dynamics, the TDS of this quantum-noise improved chaos is suppressed up to 94% and the bandwidth suppression ratio of quantum noise to chaotic laser is 1:25. The experiment agrees well with the theory. The improved chaotic laser is potentially beneficial to chaos-based random number generation and secure communication.
The LTP (LISA Testflight Package), to be flown aboard the ESA / NASA LISA Pathfinder mission, aims to demonstrate drag-free control for LISA test masses with acceleration noise below 30 fm/s^2/Hz^1/2 from 1-30 mHz. This paper describes the LTP measurement of random, position independent forces acting on the test masses. In addition to putting an overall upper limit for all source of random force noise, LTP will measure the conversion of several key disturbances into acceleration noise and thus allow a more detailed characterization of the drag-free performance to be expected for LISA.
We anticipate noise from the Laser Interferometer Space Antenna (LISA) will exhibit nonstationarities throughout the duration of its mission due to factors such as antenna repointing, cyclostationarities from spacecraft motion, and glitches as highlighted by LISA Pathfinder. In this paper, we use a surrogate data approach to test the stationarity of a time series which does not rely on the Gaussianity assumption. The main goal is to identify noise nonstationarities in the future LISA mission. This will be necessary for determining how often the LISA noise power spectral density (PSD) will need to be updated for parameter estimation routines. We conduct a thorough simulation study illustrating the power/size of vario
The Laser Interferometer Space Antenna (LISA) is a European Space Agency mission that aims to measure gravitational waves in the millihertz range. Laser frequency noise enters the interferometric measurements and dominates the expected gravitational signals by many orders of magnitude. Time-delay interferometry (TDI) is a technique that reduces this laser noise by synthesizing virtual equal-arm interferometric measurements. Laboratory experiments and numerical simulations have confirmed that this reduction is sufficient to meet the scientific goals of the mission in proof-of-concept setups. In this paper, we show that the on-board antialiasing filters play an important role in TDIs performance when the flexing of the constellation is accounted for. This coupling was neglected in previous studies. To reach an optimal reduction level, filters with vanishing group delays must be used on board or synthesized off-line. We propose a theoretical model of the residual laser noise including this flexing-filtering coupling. We also use two independent simulators to produce realistic measurement signals and compute the corresponding TDI Michelson variables. We show that our theoretical model agrees with the simulated data with exquisite precision. Using these two complementary approaches, we confirm TDIs ability to reduce laser frequency noise in a more realistic mission setup. The theoretical model provides insight on filter design and implementation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا