The information accessible from a muon-spin relaxation experiment is often limited since we lack knowledge of the precise muon stopping site. We demonstrate here the possibility of localizing a spin polarized muon in a known stopping state in a molecular material containing fluorine. The muon-spin precession that results from the entangled nature of the muon-spin and surrounding nuclear spins is sensitive to the nature of the stopping site and we use this property to identify three classes of site. We are also able to describe the extent to which the muon distorts its surroundings.
The anisotropic-exchange spin-1/2 model on a triangular lattice has been used to describe the rare-earth chalcogenides, which may have exotic ground states. We investigate the quantum phase diagram of the model by using the projected entangled pair state (PEPS) method, and compare it to the classical phase diagram. Besides two stripe-ordered phase, and the 120$^circ$ state, there is also a multi-textbf{Q} phase. We identify the multi-textbf{Q} phase as a $Z_{2}$ vortex state. No quantum spin liquid state is found in the phase diagram, contrary to the previous DMRG calculations.
There has been a great interest in magnetic field induced quantum spin liquids in Kitaev magnets after the discovery of neutron scattering continuum and half quantized thermal Hall conductivity in the material $alpha$-RuCl$_3$. In this work, we provide a semiclassical analysis of the relevant theoretical models on large system sizes, and compare the results to previous studies on quantum models with small system sizes. We find a series of competing magnetic orders with fairly large unit cells at intermediate magnetic fields, which are most likely missed by previous approaches. We show that quantum fluctuations are typically strong in these large unit cell orders, while their magnetic excitations may resemble a scattering continuum and give rise to a large thermal Hall conductivity. Our work provides an important basis for a thorough investigation of emergent spin liquids and competing phases in Kitaev magnets.
We analyze a criterion which guarantees that the ground states of certain many body systems are stable under perturbations. Specifically, we consider PEPS, which are believed to provide an efficient description, based on local tensors, for the low energy physics arising from local interactions. In order to assess stability in the framework of PEPS, one thus needs to understand how physically allowed perturbations of the local tensor affect the properties of the global state. In this paper, we show that a restricted version of the Local Topological Quantum Order (LTQO) condition provides a checkable criterion which allows to assess the stability of local properties of PEPS under physical perturbations. We moreover show that LTQO itself is stable under perturbations which preserve the spectral gap, leading to nontrivial examples of PEPS which possess LTQO and are thus stable under arbitrary perturbations.
Coherent control of individual molecular spins in nano-devices is a pivotal prerequisite for fulfilling the potential promised by molecular spintronics. By applying electric field pulses during time-resolved electron spin resonance measurements, we measure the sensitivity of the spin in several antiferromagnetic molecular nanomagnets to external electric fields. We find a linear electric field dependence of the spin states in Cr$_7$Mn, an antiferromagnetic ring with a ground-state spin of $S=1$, and in a frustrated Cu$_3$ triangle, both with coefficients of about $2~mathrm{rad}, mathrm{s}^{-1} / mathrm{V} mathrm{m}^{-1}$. Conversely, the antiferromagnetic ring Cr$_7$Ni, isomorphic with Cr$_7$Mn but with $S=1/2$, does not exhibit a detectable effect. We propose that the spin-electric field coupling may be used for selectively controlling individual molecules embedded in nanodevices.
We address the cause of the unusual muon spin relaxation (muSR) results on molecular nanomagnets (MNMs). Through measurements on protonated and deuterated samples of the MNMs Cr7Mn (S=1) and Cr8 (S=0), we show that the muon spin for $S eq 0$ MNMs is relaxed via dynamic fluctuations of the electronic spins. A freezing out of dynamic processes occurs on cooling and at low temperatures the muon spins are relaxed by the electronic spins which themselves are dephased by incoherent nuclear field fluctuations.We observe a transition to a state of static magnetic order of the MNM electronic spins in Cr7Mn below 2 K.