Do you want to publish a course? Click here

Pseudospectral versus finite-differences schemes in the numerical integration of stochastic models of surface growth

114   0   0.0 ( 0 )
 Added by Juan M. Lopez
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a comparison between finite differences schemes and a pseudospectral method applied to the numerical integration of stochastic partial differential equations that model surface growth. We have studied, in 1+1 dimensions, the Kardar, Parisi and Zhang model (KPZ) and the Lai, Das Sarma and Villain model (LDV). The pseudospectral method appears to be the most stable for a given time step for both models. This means that the time up to which we can follow the temporal evolution of a given system is larger for the pseudospectral method. Moreover, for the KPZ model, a pseudospectral scheme gives results closer to the predictions of the continuum model than those obtained through finite difference methods. On the other hand, some numerical instabilities appearing with finite difference methods for the LDV model are absent when a pseudospectral integration is performed. These numerical instabilities give rise to an approximate multiscaling observed in the numerical simulations. With the pseudospectral approach no multiscaling is seen in agreement with the continuum model.



rate research

Read More

We introduce a numerical method to integrate the stochastic Landau-Lifshitz-Gilbert equation in spherical coordinates for generic discretization schemes. This method conserves the magnetization modulus and ensures the approach to equilibrium under the expected conditions. We test the algorithm on a benchmark problem: the dynamics of a uniformly magnetized ellipsoid. We investigate the influence of various parameters, and in particular, we analyze the efficiency of the numerical integration, in terms of the number of steps needed to reach a chosen long time with a given accuracy.
Persistence probabilities of the interface height in (1+1)- and (2+1)-dimensional atomistic, solid-on-solid, stochastic models of surface growth are studied using kinetic Monte Carlo simulations, with emphasis on models that belong to the molecular beam epitaxy (MBE) universality class. Both the initial transient and the long-time steady-state regimes are investigated. We show that for growth models in the MBE universality class, the nonlinearity of the underlying dynamical equation is clearly reflected in the difference between the measured values of the positive and negative persistence exponents in both transient and steady-state regimes. For the MBE universality class, the positive and negative persistence exponents in the steady-state are found to be $theta^S_{+} = 0.66 pm 0.02$ and $theta^S_{-} = 0.78 pm 0.02$, respectively, in (1+1) dimensions, and $theta^S_{+} = 0.76 pm 0.02$ and $theta^S_{-} =0.85 pm 0.02$, respectively, in (2+1) dimensions. The noise reduction technique is applied on some of the (1+1)-dimensional models in order to obtain accurate values of the persistence exponents. We show analytically that a relation between the steady-state persistence exponent and the dynamic growth exponent, found earlier to be valid for linear models, should be satisfied by the smaller of the two steady-state persistence exponents in the nonlinear models. Our numerical results for the persistence exponents are consistent with this prediction. We also find that the steady-state persistence exponents can be obtained from simulations over times that are much shorter than that required for the interface to reach the steady state. The dependence of the persistence probability on the system size and the sampling time is shown to be described by a simple scaling form.
We describe in detail and extend a recently introduced nonperturbative renormalization group (RG) method for surface growth. The scale invariant dynamics which is the key ingredient of the calculation is obtained as the fixed point of a RG transformation relating the representation of the microscopic process at two different coarse-grained scales. We review the RG calculation for systems in the Kardar-Parisi-Zhang universality class and compute the roughness exponent for the strong coupling phase in dimensions from 1 to 9. Discussions of the approximations involved and possible improvements are also presented. Moreover, very strong evidence of the absence of a finite upper critical dimension for KPZ growth is presented. Finally, we apply the method to the linear Edwards-Wilkinson dynamics where we reproduce the known exact results, proving the ability of the method to capture qualitatively different behaviors.
71 - Bernardo A. Mello 2017
Stochastic models of surface growth are usually based on randomly choosing a substrate site to perform iterative steps, as in the etching model [1]. In this paper I modify the etching model to perform sequential, instead of random, substrate scan. The randomicity is introduced not in the site selection but in the choice of the rule to be followed in each site. The change positively affects the study of dynamic and asymptotic properties, by reducing the finite size ef- fect and the short-time anomaly and by increasing the saturation time. It also has computational benefits: better use of the cache memory and the possibility of parallel implementation.
We study the influence of a dissipation process on diffusion dynamics triggered by slow fluctuations. We study both strong- and weak-friction regime. When the latter regime applies, the system is attracted by the basin of either Gauss or Levy statistics according to whether the fluctuation correlation function is integrable or not. We analyze with a numerical calculation the border between the two basins of attraction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا