Do you want to publish a course? Click here

A random rule model of surface growth

72   0   0.0 ( 0 )
 Added by Bernardo A. Mello
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Stochastic models of surface growth are usually based on randomly choosing a substrate site to perform iterative steps, as in the etching model [1]. In this paper I modify the etching model to perform sequential, instead of random, substrate scan. The randomicity is introduced not in the site selection but in the choice of the rule to be followed in each site. The change positively affects the study of dynamic and asymptotic properties, by reducing the finite size ef- fect and the short-time anomaly and by increasing the saturation time. It also has computational benefits: better use of the cache memory and the possibility of parallel implementation.



rate research

Read More

We introduce a network growth model in which the preferential attachment probability includes the fitness vertex and the Euclidean distance between nodes. We grow a planar network around its barycenter. Each new site is fixed in space by obeying a power law distribution.
A random growth lattice filling model of percolation with touch and stop growth rule is developed and studied numerically on a two dimensional square lattice. Nucleation centers are continuously added one at a time to the empty sites and the clusters are grown from these nucleation centers with a tunable growth probability g. As the growth probability g is varied from 0 to 1 two distinct regimes are found to occur. For gle 0.5, the model exhibits continuous percolation transitions as ordinary percolation whereas for gge 0.8 the model exhibits discontinuous percolation transitions. The discontinuous transition is characterized by discontinuous jump in the order parameter, compact spanning cluster and absence of power law scaling of cluster size distribution. Instead of a sharp tricritical point, a tricritical region is found to occur for 0.5 < g < 0.8 within which the values of the critical exponents change continuously till the crossover from continuous to discontinuous transition is completed.
70 - Ellak Somfai 2004
Random walkers absorbing on a boundary sample the Harmonic Measure linearly and independently: we discuss how the recurrence times between impacts enable non-linear moments of the measure to be estimated. From this we derive a new technique to simulate Dielectric Breakdown Model growth which is governed nonlinearly by the Harmonic Measure. Recurrence times are shown to be accurate and effective in probing the multifractal growth measure of diffusion limited aggregation. For the Dielectric Breakdown Model our new technique grows large clusters efficiently and we are led to significantly revise earlier exponent estimates. Previous results by two conformal mapping techniques were less converged than expected, and in particular a recent theoretical suggestion of superuniversality is firmly refuted.
129 - M. Pleimling 2004
In the two-dimensional Ising model weak random surface field is predicted to be a marginally irrelevant perturbation at the critical point. We study this question by extensive Monte Carlo simulations for various strength of disorder. The calculated effective (temperature or size dependent) critical exponents fit with the field-theoretical results and can be interpreted in terms of the predicted logarithmic corrections to the pure systems critical behaviour.
We describe in detail and extend a recently introduced nonperturbative renormalization group (RG) method for surface growth. The scale invariant dynamics which is the key ingredient of the calculation is obtained as the fixed point of a RG transformation relating the representation of the microscopic process at two different coarse-grained scales. We review the RG calculation for systems in the Kardar-Parisi-Zhang universality class and compute the roughness exponent for the strong coupling phase in dimensions from 1 to 9. Discussions of the approximations involved and possible improvements are also presented. Moreover, very strong evidence of the absence of a finite upper critical dimension for KPZ growth is presented. Finally, we apply the method to the linear Edwards-Wilkinson dynamics where we reproduce the known exact results, proving the ability of the method to capture qualitatively different behaviors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا