Do you want to publish a course? Click here

Desynchronization of pulse-coupled oscillators with delayed excitatory coupling

136   0   0.0 ( 0 )
 Added by Tianping Chen
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

Collective behavior of pulse-coupled oscillators has been investigated widely. As an example of pulse-coupled networks, fireflies display many kinds of flashing patterns. Mirollo and Strogatz (1990) proposed a pulse-coupled oscillator model to explain the synchronization of South East Asian fireflies ({itshape Pteroptyx malaccae}). However, transmission delays were not considered in their model. In fact, the presence of transmission delays can lead to desychronization. In this paper, pulse-coupled oscillator networks with delayed excitatory coupling are studied. Our main result is that under reasonable assumptions, pulse-coupled oscillator networks with delayed excitatory coupling can not achieve complete synchronization, which can explain why another species of fireflies ({itshape Photinus pyralis}) rarely synchronizes flashing. Finally, two numerical simulations are given. In the first simulation, we illustrate that even if all the initial phases are very close to each other, there could still be big variations in the times to process the pulses in the pipeline. It implies that asymptotical synchronization typically also cannot be achieved. In the second simulation, we exhibit a phenomenon of clustering synchronization.



rate research

Read More

128 - Wei Wu , Tianping Chen 2008
For networks of pulse-coupled oscillators with delayed excitatory coupling, we analyze the firing behaviors depending on coupling strength and transmission delay. The parameter space consisting of strength and delay is partitioned into two regions. For one region, we derive a low bound of interspike intervals, from which three firing properties are obtained. However, this bound and these properties would no longer hold for another region. Finally, we show the different synchronization behaviors for networks with parameters in the two regions.
We study the effects of delayed coupling on timing and pattern formation in spatially extended systems of dynamic oscillators. Starting from a discrete lattice of coupled oscillators, we derive a generic continuum theory for collective modes of long wavelength. We use this approach to study spatial phase profiles of cellular oscillators in the segmentation clock, a dynamic patterning system of vertebrate embryos. Collective wave patterns result from the interplay of coupling delays and moving boundary conditions. We show that the phase profiles of collective modes depend on coupling delays.
163 - Ming Luo , Yongjun Wu 2011
A universal approach is proposed for suppression of collective synchrony in a large population of interacting rhythmic units. We demonstrate that provided that the internal coupling is weak, stabilization of overall oscillations with vanishing stimulation leads to desynchronization in a large ensemble of coupled oscillators, without altering significantly the essential nature of each constituent oscillator. We expect our findings to be a starting point for the issue of destroying undesired synchronization, e. g. desynchronization techniques for deep brain stimulation for neurological diseases characterized by pathological neural synchronization.
A minimalistic model of the half-center oscillator is proposed. Within it, we consider dynamics of two excitable neurons interacting by means of the excitatory coupling. In the parameter space of the model, we identify the regions of dynamics, characteristic for central pattern generators: respectively, in-phase, anti-phase synchronous oscillations and quiescence, and study various bifurcation transitions between all these states. Suggested model can serve as a building block of specific complex central pattern generators for studies of rhythmic activity and information processing in animals and humans.
A dead zone in the interaction between two dynamical systems is a region of their joint phase space where one system is insensitive to the changes in the other. These can arise in a number of contexts, and their presence in phase interaction functions has interesting dynamical consequences for the emergent dynamics. In this paper, we consider dead zones in the interaction of general coupled dynamical systems. For weakly coupled limit cycle oscillators, we investigate criteria that give rise to dead zones in the phase interaction functions. We give applications to coupled multiscale oscillators where coupling on only one branch of a relaxation oscillation can lead to the appearance of dead zones in a phase description of their interaction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا