Do you want to publish a course? Click here

Two path transport measurements on a triple quantum dot

102   0   0.0 ( 0 )
 Added by Maximilian Rogge
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an advanced lateral triple quantum dot made by local anodic oxidation. Three dots are coupled in a starlike geometry with one lead attached to each dot thus allowing for multiple path transport measurements with two dots per path. In addition charge detection is implemented using a quantum point contact. Both in charge measurements as well as in transport we observe clear signatures of states from each dot. Resonances of two dots can be established allowing for serial transport via the corresponding path. Quadruple points with all three dots in resonance are prepared for different electron numbers and analyzed concerning the interplay of the simultaneously measured transport along both paths.



rate research

Read More

112 - G. Granger , L. Gaudreau , A. Kam 2010
We measure a triple quantum dot in the regime where three addition lines, corresponding to the addition of an electron to each of three dots, pass through each other. In particular, we probe the interplay between transport and the tridimensional nature of the stability diagram. We choose the regime most pertinent for spin qubit applications. We find that at low bias transport through the triple quantum dot circuit is only possible at six quadruple point locations. The results are consistent with an equivalent circuit model.
139 - L. Gaudreau , A. Kam , G. Granger 2009
In this paper we report on a tuneable few electron lateral triple quantum dot design. The quantum dot potentials are arranged in series. The device is aimed at studies of triple quantum dot properties where knowing the exact number of electrons is important as well as quantum information applications involving electron spin qubits. We demonstrate tuning strategies for achieving required resonant conditions such as quadruple points where all three quantum dots are on resonance. We find that in such a device resonant conditions at specific configurations are accompanied by novel charge transfer behaviour.
We present studies of thermal entanglement of a three-spin system in triangular symmetry. Spin correlations are described within an effective Heisenberg Hamiltonian, derived from the Hubbard Hamiltonian, with super-exchange couplings modulated by an effective electric field. Additionally a homogenous magnetic field is applied to completely break the degeneracy of the system. We show that entanglement is generated in the subspace of doublet states with different pairwise spin correlations for the ground and excited states. At low temperatures thermal mixing between the doublets with the same spin destroys entanglement, however one can observe its restoration at higher temperatures due to the mixing of the states with an opposite spin orientation or with quadruplets (unentangled states) always destroys entanglement. Pairwise entanglement is quantified using concurrence for which analytical formulae are derived in various thermal mixing scenarios. The electric field plays a specific role -- it breaks the symmetry of the system and changes spin correlations. Rotating the electric field can create maximally entangled qubit pairs together with a separate spin (monogamy) that survives in a relatively wide temperature range providing robust pairwise entanglement generation at elevated temperatures.
225 - M. Seo , H. K. Choi , S.-Y. Lee 2014
We experimentally investigate the charge (isospin) frustration induced by a geometrical symmetry in a triangular triple quantum dot. We observe the ground-state charge configurations of six-fold degeneracy, the manifestation of the frustration. The frustration results in omnidirectional charge transport, and it is accompanied by nearby nontrivial triple degenerate states in the charge stability diagram. The findings agree with a capacitive interaction model. We also observe unusual transport by the frustration, which might be related to elastic cotunneling and the interference of trajectories through the dot. This work demonstrates a unique way of studying geometrical frustration in a controllable way.
Electron pairing due to a repulsive Coulomb interaction in a triple quantum dot (TQD) is experimentally studied. It is found that electron pairing in two dots of a TQD is mediated by the third dot, when the third dot strongly couples with the other two via Coulomb repulsion so that the TQD is in the twofold degenerate ground states of (1, 0, 0) and (0, 1, 1) charge configurations. Using the transport spectroscopy that monitors electron transport through each individual dot of a TQD, we analyze how to achieve the degeneracy in experiments, how the degeneracy is related to electron pairing, and the resulting nontrivial behavior of electron transport. Our findings may be used to design a system with nontrivial electron correlations and functionalities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا