Do you want to publish a course? Click here

Stimulated Raman spin coherence and spin-flip induced hole burning in charged GaAs quantum dots

127   0   0.0 ( 0 )
 Added by Jun Cheng
 Publication date 2008
  fields Physics
and research's language is English
 Authors Jun Cheng




Ask ChatGPT about the research

High-resolution spectral hole burning (SHB) in coherent nondegenerate differential transmission spectroscopy discloses spin-trion dynamics in an ensemble of negatively charged quantum dots. In the Voigt geometry, stimulated Raman spin coherence gives rise to Stokes and anti-Stokes sidebands on top of the trion spectral hole. The prominent feature of an extremely narrow spike at zero detuning arises from spin population pulsation dynamics. These SHB features confirm coherent electron spin dynamics in charged dots, and the linewidths reveal spin spectral diffusion processes.



rate research

Read More

We report on the coherent optical excitation of electron spin polarization in the ground state of charged GaAs quantum dots via an intermediate charged exciton (trion) state. Coherent optical fields are used for the creation and detection of the Raman spin coherence between the spin ground states of the charged quantum dot. The measured spin decoherence time, which is likely limited by the nature of the spin ensemble, approaches 10 ns at zero field. We also show that the Raman spin coherence in the quantum beats is caused not only by the usual stimulated Raman interaction but also by simultaneous spontaneous radiative decay of either excited trion state to a coherent combination of the two spin states.
143 - Y. Benny , R. Presman , Y.Kodriano 2013
We use temporally resolved intensity cross-correlation measurements to identify the biexciton-exciton radiative cascades in a negatively charged QD. The polarization sensitive correlation measurements show unambiguously that the excited two electron triplet states relax non-radiatively to their singlet ground state via a spin non conserving flip-flop with the ground state heavy hole. We explain this mechanism in terms of resonant coupling between the confined electron states and an LO phonon. This resonant interaction together with the electron-hole exchange interaction provides an efficient mechanism for this, otherwise spin-blockaded, electronic relaxation.
Electron spin coherence is induced via light-hole transitions in a quantum well waveguide without either an external or internal DC magnetic field. In the absence of spin precession, the induced spin coherence is detected through effects of quantum interference in the spectral domain coherent nonlinear optical response. We interpret the experimental results qualitatively using a simple few-level model with only the optical transition selection rule as its basic ingredients.
We present experimental data and associated theory for correlations in a series of experiments involving repeated Landau-Zener sweeps through the crossing point of a singlet state and a spin aligned triplet state in a GaAs double quantum dot containing two conduction electrons, which are loaded in the singlet state before each sweep, and the final spin is recorded after each sweep. The experiments reported here measure correlations on time scales from 4 $mu$s to 2 ms. When the magnetic field is aligned in a direction such that spin-orbit coupling cannot cause spin flips, the correlation spectrum has prominent peaks centered at zero frequency and at the differences of the Larmor frequencies of the nuclei, on top of a frequency-independent background. When the spin-orbit field is relevant, there are additional peaks, centered at the frequencies of the individual species. A theoretical model which neglects the effects of high-frequency charge noise correctly predicts the positions of the observed peaks, and gives a reasonably accurate prediction of the size of the frequency-independent background, but gives peak areas that are larger than the observed areas by a factor of two or more. The observed peak widths are roughly consistent with predictions based on nuclear dephasing times of the order of 60 $mu$s. However, there is extra weight at the lowest observed frequencies, which suggests the existence of residual correlations on the scale of 2 ms. We speculate on the source of these discrepancies.
118 - A. Greilich 2006
Electron spin coherence has been generated optically in n-type modulation doped (In,Ga)As/GaAs quantum dots (QDs) which contain on average a single electron per dot. The coherence arises from resonant excitation of the QDs by circularly-polarized laser pulses, creating a coherent superposition of an electron and a trion state. Time dependent Faraday rotation is used to probe the spin precession of the optically oriented electrons about a transverse magnetic field. Spin coherence generation can be controlled by pulse intensity, being most efficient for (2n+1)pi-pulses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا