Do you want to publish a course? Click here

A deep AAOmega survey of low-luminosity galaxies in the Shapley Supercluster: Stellar population trends

117   0   0.0 ( 0 )
 Added by Russell J. Smith
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present new optical spectroscopy for 342 R<18 galaxies in the Shapley Supercluster obtained with the AAOmega facility at the Anglo-Australian Telescope. We describe the observations and measurements of central velocity dispersion, emission line equivalent widths and absorption line indices. The distinguishing characteristic of the survey is its coverage of a very wide baseline in velocity dispersion (30-300 km/s), while achieving high signal-to-noise ratio throughout (median 60 per Ang). Significant emission at H-alpha was detected in ~20 per cent of red-sequence Shapley members. Using line-ratio diagnostics, we find that the emission is LINER-like at high luminosity, but driven by star-formation in low-luminosity galaxies. We use Lick indices to characterise the absorption spectra. We define a subset of galaxies with very low emission contamination, and fit the index-sigma relations for this subset. Comparing the index-sigma slopes against predictions from single-burst stellar population models, we infer the scaling relations of age, total metallicity, [Z/H], and alpha-element abundance ratio, [a/Fe]. To reproduce the observed index-sigma slopes, all three parameters must increase with increasing velocity dispersion. Specifically, we recover: Age propto sigma^0.52+/-0.10, Z/H propto sigma^0.34+/-0.07, and a/Fe propto sigma^0.23+/-0.06 (error reflects systematic effects), derived over a decade baseline in velocity dispersion. The recovered age-sigma relation is shown to be consistent with the observed evolution in the giant-to-dwarf galaxy ratio in clusters at redshifts z=0.4-0.8. A companion paper will analyse the distribution of age, [Z/H] and [a/Fe] for individual galaxies. (Abridged.)



rate research

Read More

We present the Shapley Optical Survey, a photometric study covering a 2 deg^2 region of the Shapley Supercluster core at z ~ 0.05 in two bands (B and R). The galaxy sample is complete to B=22.5 (>M^*+6, N_{gal}=16588), and R=22.0 (>M^*+7, N_{gal}=28008). The galaxy luminosity function cannot be described by a single Schechter function due to dips apparent at B ~ 17.5 (M_B ~ -19.3) and R ~ 17.0 (M_R ~ -19.8) and the clear upturn in the counts for galaxies fainter than B and R ~18 mag. We find, instead, that the sum of a Gaussian and a Schechter function, for bright and faint galaxies respectively, is a suitable representation of the data. We study the effects of the environment on the photometric properties of galaxies, deriving the galaxy luminosity functions in three regions selected according to the local galaxy density, and find a marked luminosity segregation, in the sense that the LF faint-end is different at more than 3sigma confidence level in regions with different densities. In addition, the luminosity functions of red and blue galaxy populations show very different behaviours: while red sequence counts are very similar to those obtained for the global galaxy population, the blue galaxy luminosity functions are well described by a single Schechter function and do not vary with the density. Such large environmentally-dependent deviations from a single Schechter function are difficult to produce solely within galaxy merging or suffocation scenarios. Instead the data support the idea that mechanisms related to the cluster environment, such as galaxy harassment or ram-pressure stripping, shape the galaxy LFs by terminating star-formation and producing mass loss in galaxies at ~M^*+2, a magnitude range where blue late-type spirals used to dominate cluster populations, but are now absent.
We present a panchromatic study of luminosity functions (LFs) and stellar mass functions (SMFs) of galaxies in the core of the Shapley supercluster at z=0.048, in order to investigate how the dense environment affects the galaxy properties, such as star formation (SF) or stellar masses. We find that while faint-end slopes of optical and NIR LFs steepen with decreasing density, no environment effect is found in the slope of the SMFs. This suggests that mechanisms transforming galaxies in different environments are mainly related to the quench of SF rather than to mass-loss. The Near-UV (NUV) and Far-UV (FUV) LFs obtained have steeper faint-end slopes than the local field population, while the 24$mu$m and 70$mu$m galaxy LFs for the Shapley supercluster have shapes fully consistent with those obtained for the local field galaxy population. This apparent lack of environmental dependence for the infrared (IR) LFs suggests that the bulk of the star-forming galaxies that make up the observed cluster IR LF have been recently accreted from the field and have yet to have their SF activity significantly affected by the cluster environment.
We present two new examples of galaxies undergoing transformation in the Shapley supercluster core. These low-mass (stellar mass from 0.4E10 to 1E10 Msun) galaxies are members of the two clusters SC-1329-313 (z=0.045) and SC-1327-312 (z=0.049). Integral-field spectroscopy complemented by imaging in ugriK bands and in Halpha narrow-band are used to disentangle the effects of tidal interaction (TI) and ram-pressure stripping (RPS). In both galaxies, SOS-61086 and SOS-90630, we observe one-sided extraplanar ionized gas extending respectively 30kpc and 41kpc in projection from their disks. The galaxies gaseous disks are truncated and the kinematics of the stellar and gas components are decoupled, supporting the RPS scenario. The emission of the ionized gas extends in the direction of a possible companion for both galaxies suggesting a TI. The overall gas velocity field of SOS-61086 is reproduced by ad hoc N-body/hydrodynamical simulations of RPS acting almost face-on and starting about 250Myr ago, consistent with the age of the young stellar populations. A link between the observed gas stripping and the cluster-cluster interaction experienced by SC-1329-313 and A3562 is suggested. Simulations of ram pressure acting almost edge-on are able to fully reproduce the gas velocity field of SOS-90630, but cannot at the same time reproduce the extended tail of outflowing gas. This suggests that an additional disturbance from a TI is required. This study adds a piece of evidence that RPS may take place in different environments with different impacts and witnesses the possible effect of cluster-cluster merger on RPS.
We present stellar population age and metallicity trends for a sample of 59 S0 galaxies based on optical SDSS and NIR J & H photometry. When combined with optical g and r passband imaging data from the SDSS archive and stellar population models, we obtain radial age and metallicity trends out to at least 5 effective radii for most of the galaxies in our sample. The sample covers a range in stellar mass and light concentration. We find an average central light-weighted age of ~ 4 Gyr and central metallicity [Z/H] ~ 0.2 dex. Almost all galaxies show a negative metallicity gradient from the center out, with an average value of Delta[Z/H]/Delta(log(r/Re)) = -0.6. An age increase, decrease, and minimal change with radius is observed for 58%, 19%, and 23%, respectively, for a mean age gradient of Delta(age)/Delta(log(r/Re)) = 2.3 Gyr dex^{-1}. For 14 out of 59 galaxies, the light-weighted age of the outer region is greater than 10 Gyr. We find that galaxies with both lower mass and lower concentration have younger light-weighted ages and lower light-weighted metallicities. This mass-metallicity relation extends into the outer regions of our S0 galaxies. Our results are consistent with the formation of S0 galaxies through the transformation of spiral galaxy disks. Determining the structural component that makes up the outer region of galaxies with old outksirts is a necessary step to understand the formation history of S0 galaxies.
We present new results of our wide-field redshift survey of galaxies in a 182 square degree region of the Shapley Supercluster (SSC) based on observations with the FLAIR-II spectrograph on the UK Schmidt Telescope. We present new measurements to give a total sample of redshifts for 710 bright (R<16.6) galaxies, of which 464 are members of the SSC (8000<v<18000 kms). Our data reveal that the main plane of the SSC extends further than previously realised, filling the whole extent of our survey region of 10 degrees by 20 degrees on the sky (35 Mpc by 70 Mpc). There is also a significant structure associated with the slightly nearer Abell 3571 cluster complex with a caustic structure evident out to a radius of 6 Mpc. These galaxies seem to link two previously identified sheets of galaxies and establish a connection with a third one at v=15000 kms. They also tend to fill the gap of galaxies between the foreground Hydra-Centaurus region and the more distant SSC. We calculate galaxy overdensities of 5.0+/-0.1 over the 182 square degree region surveyed and 3.3+/-0.1 in a 159 square degree region excluding rich clusters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا