Do you want to publish a course? Click here

Finding the Charge of the top quark in the Dilepton Channel

239   0   0.0 ( 0 )
 Added by Andrew Beretvas
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

There is a question about the identity of the top quark. Is it the top quark of the Standard Model (SM) with electric charge 2/3 or is it an exotic quark with charge -4/3? An exotic quark has been proposed by D. Chang et al.cite{hep-ph/9810531, hep-ph/9805273}. This analysis will use the standard CDF run II dilepton sample. The key ingredients of this analysis are the correct pairing of the lepton and b-jet, the determination of the charge of the b-jet. The analysis proceeds by using a binomial distribution and is formulated so that rejecting one hypothesis means support for the other hypothesis.



rate research

Read More

We measure the top quark mass (mt) in ppbar collisions at a center of mass energy of 1.96 TeV using dilepton ttbar->W+bW-bbar->l+nubl-nubarbbar events, where l denotes an electron, a muon, or a tau that decays leptonically. The data correspond to an integrated luminosity of 5.4 fb-1 collected with the D0 detector at the Fermilab Tevatron Collider. We obtain mt = 174.0 +- 1.8(stat) +- 2.4(syst) GeV, which is in agreement with the current world average mt = 173.3 +- 1.1 GeV. This is currently the most precise measurement of mt in the dilepton channel.
We present a measurement of the top-quark mass in events containing two leptons (electrons or muons) with a large transverse momentum, two or more energetic jets, and a transverse-momentum imbalance. We use the full proton-antiproton collision data set collected by the CDF experiment during the Fermilab Tevatron Run~II at center-of-mass energy $sqrt{s} = 1.96$ TeV, corresponding to an integrated luminosity of 9.1 fb$^{-1}$. A special observable is exploited for an optimal reduction of the dominant systematic uncertainty, associated with the knowledge of the absolute energy of the hadronic jets. The distribution of this observable in the selected events is compared to simulated distributions of ${tbar{t}}$ dilepton signal and background.We measure a value for the top-quark mass of $171.5pm 1.9~{rm (stat)}pm 2.5~{rm (syst)}$ GeV/$c^2$.
130 - Yang Bai , Zhenyu Han 2009
We perform a model-independent study for top-antitop and top-top resonances in the dilepton channel at the Large Hadtron Collider. In this channel, we can solve the kinematic system to obtain the momenta of all particles including the two neutrinos, and hence the resonance mass and spin. For discovering top-antitop resonances, the dilepton channel is competitive to the semileptonic channel because of the good resolution of lepton momentum measurement and small standard model backgrounds. Moreover, the charges of the two leptons can be identified, which makes the dilepton channel advantageous for discovering top-top resonances and for distinguishing resonance spins. We discuss and provide resolutions for difficulties associated with heavy resonances and highly boosted top quarks.
153 - D0 Collaboration 2016
We present a measurement of the top quark mass in ppbar collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The data were collected by the D0 experiment corresponding to an integrated luminosity of 9.7 fb-1. The matrix element technique is applied to ttbar events in the final state containing leptons (electrons or muons) with high transverse momenta and at least two jets. The calibration of the jet energy scale determined in the lepton + jets final state of ttbar decays is applied to jet energies. This correction provides a substantial reduction in systematic uncertainties. We obtain a top quark mass of mt = 173.93 +- 1.84 GeV.
75 - Kentaro Kawade , Ki Lie 2016
Measurements of normalized differential cross-sections of top quark pair ($tbar t$) production are presented as a function of the mass, the transverse momentum and the rapidity of the $tbar t$ system in proton-proton collisions at center-of-mass energies of $sqrt{s}$ = 7 TeV and 8 TeV. The dataset corresponds to an integrated luminosity of 4.6 fb$^{-1}$ at 7 TeV and 20.2 fb$^{-1}$ at 8 TeV, recorded with the ATLAS detector at the Large Hadron Collider. Events with top quark pair signatures are selected in the dilepton final state, requiring exactly two charged leptons and at least two jets with at least one of the jets identified as likely to contain a $b$-hadron. The measured distributions are corrected for detector effects and selection efficiency to cross-sections at the parton level. The differential cross-sections are compared with different Monte Carlo generators and theoretical calculations of $tbar t$ production. The results are consistent with the majority of predictions in a wide kinematic range.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا