No Arabic abstract
The velocity dispersion of stars in the solar neighbourhood thin disc increases with time after star formation. Nordstrom et al. (2004) is the most recent observational attempt to constrain the age-velocity dispersion relation. They fitted the age-velocity dispersion relations of each Galactic cardinal direction space velocity component, U (towards the Galactic centre), V (in the direction of Galactic rotation) and W (towards the North Galactic Pole), with power laws and interpreted these as evidence for continuous heating of the disc in all directions throughout its lifetime. We re-visit these relations with their data and use Famaey et al. (2005) to show that structure in the local velocity distribution function distorts the in-plane (U and V) velocity distributions away from Gaussian so that a dispersion is not an adequate parametrization of their functions. The age-sigma(W) relation can however be constrained because the sample is well phase-mixed vertically. We do not find any local signature of the stellar warp in the Galactic disc. Vertical disc heating does not saturate at an early stage. Our new result is that a power law is not required by the data: disc heating models that saturate after ~ 4.5 Gyr are equally consistent with observations.
We study the relation between stellar ages and vertical velocity dispersion (the age-velocity relation, or AVR) in a sample of seven simulated disc galaxies. In our simulations, the shape of the AVR for stars younger than 9 Gyr depends strongly on the merger history at low redshift, with even 1:10 - 1:15 mergers being able to create jumps in the AVR (although these jumps might not be detectable if the errors on stellar ages are on the order of 30%). For galaxies with a quiescent history at low redshift, we find that the vertical velocity dispersion rises smoothly for ages up to 8-9 Gyr, following a power law with a slope of ~0.5, similar to what is observed in the solar neighbourhood by the Geneva-Copenhagen Survey. For these galaxies, we show that the slope of the AVR is not imprinted at birth, but is the result of subsequent heating. By contrast, in all our simulations, the oldest stars form a significantly different population, with a high velocity dispersion. These stars are usually born kinematically hot in a turbulent phase of intense mergers at high redshift, and also include some stars accreted from satellites. This maximum in velocity dispersion is strongly decreased when age errors are included, suggesting that observations can easily miss such a jump with the current accuracy of age measurements.
The age-velocity dispersion relation is an important tool to understand the evolution of the disc of the Andromeda galaxy (M31) in comparison with the Milky Way. We use Planetary Nebulae (PNe) to obtain the age-velocity dispersion relation in different radial bins of the M31 disc. We separate the observed PNe sample based on their extinction values into two distinct age populations. The observed velocities of our high- and low-extinction PNe, which correspond to higher and lower mass progenitors respectively, are fitted in de-projected elliptical bins to obtain their rotational velocities, $V_{phi}$, and corresponding dispersions, $rmsigma_{phi}$. We assign ages to the two PNe populations by comparing central-star properties of an archival sub-sample of PNe, having models fitted to their observed spectral features, to stellar evolution tracks. For the high- and low-extinction PNe, we find ages of $sim2.5$ Gyr and $sim4.5$ Gyr respectively, with distinct kinematics beyond a deprojected radius R$rm_{GC}= 14$ kpc. At R$rm_{GC}$=17--20 kpc, which is the equivalent distance in disc scale lengths of the Sun in the Milky Way disc, we obtain $rmsigma_{phi,~2.5~Gyr}= 61pm 14$ km s$^{-1}$ and $rmsigma_{phi,~4.5~Gyr}= 101pm 13$ km s$^{-1}$. The age-velocity dispersion relation for the M31 disc is obtained in two radial bins, R$rm_{GC}$=14--17 and 17--20 kpc. The high- and low-extinction PNe are associated with the young thin and old thicker disc of M31 respectively, whose velocity dispersion values increase with age. These values are almost twice and thrice that of the Milky Way disc stellar population of corresponding ages. From comparison with simulations of merging galaxies, we find that the age-velocity dispersion relation in the M31 disc measured using PNe is indicative of a single major merger that occurred 2.5 -- 4.5 Gyr ago with an estimated merger mass ratio $approx$ 1:5.
Understanding the history and the evolution of the Milky Way disc is one of the main goals of modern astrophysics. We study the velocity dispersion behaviour of Galactic disc stars as a function of the [Mg/Fe] ratio, which can be used as a proxy of relative age. This key relation is essential to constrain the formation mechanisms of the disc stellar populations as well as the cooling processes. We used the recommended parameters and chemical abundances of 7800 FGK Milky Way field stars from the second internal data release of the Gaia-ESO Survey. These stars were observed with the GIRAFFE spectrograph, and cover a large spatial volume (6<R<10kpc and |Z|<2kpc). Based on the [Mg/Fe] and [Fe/H] ratios, we separated the thin- from the thick-disc sequence. From analysing the Galactocentric velocity of the stars for the thin disc, we find a weak positive correlation between Vphi and [Fe/H], due to a slowly rotating Fe-poor tail. For the thick disc, a strong correlation with [Fe/H] and [Mg/Fe] is established. We have detected an inversion of the radial velocity dispersion with [Mg/Fe] for thick-disc stars with [Fe/H]<-0.1dex and [Mg/Fe]>+0.2dex. First, the velocity dispersion increases with [Mg/Fe] at all [Fe/H] ratios for the thin-disc stars, and then it decreases for the thick-disc at the highest [Mg/Fe] abundances. Similar trends are observed within the errors for the azimuthal velocity dispersion, while a continuous increase with [Mg/Fe] is observed for the vertical velocity dispersion. The velocity dispersion decrease agrees with previous measurements of the RAVE survey, although it is observed here for a greater metallicity interval and a larger spatial volume. We confirm the existence of [Mg/Fe]-rich thick-disc stars with cool kinematics in the generally turbulent context of the primitive Galactic disc. This is discussed in the framework of the different disc formation scenarios.
In the era of large spectroscopic surveys, massive databases of high-quality spectra provide tools to outline a new picture of our Galaxy. In this framework, an important piece of information is provided by our ability to infer stellar ages. We aim to provide empirical relations between stellar ages and abundance ratios for a sample of solar-like stars. We investigate the dependence on metallicity, and we apply our relations to Gaia-ESO samples of open clusters and field stars. We analyse high-resolution and high-S/N HARPS spectra of a sample of solar-like stars to obtain precise determinations of their atmospheric parameters and abundances through differential spectral analysis and age through isochrone fitting. We investigate the relations between ages and abundance ratios. For the abundance ratios with a steeper dependence on age, we perform multivariate linear regressions, including the dependence on metallicity. We apply our relations to a sample of open clusters located in 4<R$_{GC}$<16 kpc. Using them, we are able to recover the literature ages only for clusters located at R$_{GC}$>7 kpc. In these clusters, the content of s-elements is lower than expected from chemical evolution models, and consequently the [s/$alpha$] are lower than in clusters of the same age located in the solar neighbourhood. With our chemical evolution model and a set of empirical yields, we suggest that a strong dependence on the star formation history and metallicity-dependent yields of s-elements can substantially modify the slope of the [s/$alpha$]-[Fe/H]-age relation in different regions of the Galaxy. Our results point towards a non-universal relation [s/$alpha$]-[Fe/H]-age, indicating the existence of relations at different R$_{GC}$ or for different star formation history. A better understanding of the s-process at high metallicity is necessary to fully understand the origin of these variations.
Stellar ages are a crucial component to studying the evolution of the Milky Way. Using Gaia DR2 distance estimates, it is now possible to estimate stellar ages for a larger volume of evolved stars through isochrone matching. This work presents [M/H]-age and [$alpha$/M]-age relations derived for different spatial locations in the Milky Way disc. These relations are derived by hierarchically modelling the star formation history of stars within a given chemical abundance bin. For the first time, we directly observe that significant variation is apparent in the [M/H]-age relation as a function of both Galactocentric radius and distance from the disc mid-plane. The [M/H]-age relations support claims that radial migration has a significant effect in the plane of the disc. Using the [M/H] bin with the youngest mean age at each radial zone in the plane of the disc, the present-day metallicity gradient is measured to be $-0.059 pm 0.010$ dex kpc$^{-1}$, in agreement with Cepheids and young field stars. We find a vertically flared distribution of young stars in the outer disc, confirming predictions of models and previous observations. The mean age of the [M/H]-[$alpha$/M] distribution of the solar neighborhood suggests that the high-[M/H] stars are not an evolutionary extension of the low-$alpha$ sequence. Our observational results are important constraints to Galactic simulations and models of chemical evolution.