Do you want to publish a course? Click here

Coherence and clock shifts in ultracold Fermi gases with resonant interactions

200   0   0.0 ( 0 )
 Added by Martin W. Zwierlein
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using arguments based on sum rules, we derive a general result for the average shifts of rf lines in Fermi gases in terms of interatomic interaction strengths and two-particle correlation functions. We show that near an interaction resonance shifts vary inversely with the atomic scattering length, rather than linearly as in dilute gases, thus accounting for the experimental observation that clock shifts remain finite at Feshbach resonances.



rate research

Read More

We present detailed numerical and analytical investigations of the nonequilibrium dynamics of spin-polarized ultracold Fermi gases following a sudden switching-on of the atom-atom pairing coupling strength. Within a time-dependent mean-field approach we show that on increasing the imbalance it takes longer for pairing to develop, the period of the nonlinear oscillations lengthens, and the maximum value of the pairing amplitude decreases. As expected, dynamical pairing is suppressed by the increase of the imbalance. Eventually, for a critical value of the imbalance the nonlinear oscillations do not even develop. Finally, we point out an interesting temperature-reentrant behavior of the exponent characterizing the initial instability.
78 - L. M. Jensen , J. Kinnunen , 2006
Superconductivity and superfluidity of fermions require, within the BCS theory, matching of the Fermi energies of the two interacting Fermion species. Difference in the number densities of the two species leads either to a normal state, to phase separation, or - potentially - to exotic forms of superfluidity such as FFLO-state, Sarma state or breached pair state. We consider ultracold Fermi gases with polarization, i.e. spin-density imbalance. We show that, due to the gases being trapped and isolated from the environment in terms of particle exchange, exotic forms of superfluidity appear as a shell around the BCS-superfluid core of the gas and, for large density imbalance, in the core as well. We obtain these results by describing the effect of the trapping potential by using the Bogoliubov-de Gennes equations. For comparison to experiments, we calculate also the condensate fraction, and show that, in the center of the trap, a polarized superfluid leads to a small dip in the central density difference. We compare the results to those given by local density approximation and find qualitatively different behavior.
We propose to detect quadrupole interactions of neutral ultra-cold atoms via their induced mean-field shift. We consider a Mott insulator state of spin-polarized atoms in a two-dimensional optical square lattice. The quadrupole moments of the atoms are aligned by an external magnetic field. As the alignment angle is varied, the mean-field shift shows a characteristic angular dependence, which constitutes the defining signature of the quadrupole interaction. For the $^{3}P_{2}$ states of Yb and Sr atoms, we find a frequency shift of the order of tens of Hertz, which can be realistically detected in experiment with current technology. We compare our results to the mean-field shift of a spin-polarized quasi-2D Fermi gas in continuum.
153 - Wei Zhang , L.-M. Duan 2008
We consider a trapped Fermi gas with population imbalance at finite temperatures and map out the detailed phase diagram across a wide Feshbach resonance. We take the Larkin-Ovchinnikov-Fulde-Ferrel (LOFF) state into consideration and minimize the thermodynamical potential to ensure stability. Under the local density approximation, we conclude that a stable LOFF state is present only on the BCS side of the Feshbach resonance, but not on the BEC side or at unitarity. Furthermore, even on the BCS side, a LOFF state is restricted at low temperatures and in a small region of the trap, which makes a direct observation of LOFF state a challenging task.
Time-dependent density-functional theory (TDDFT) is a powerful tool to study the non-equilibrium dynamics of inhomogeneous interacting many-body systems. Here we show that the simple adiabatic local-spin-density approximation for the time-dependent exchange-correlation potential is surprisingly accurate in describing collective density and spin dynamics in strongly correlated one-dimensional ultracold Fermi gases. Our conclusions are based on extensive comparisons between our TDDFT results and accurate results based on the adaptive time-dependent density-matrix renormalization-group method.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا