Do you want to publish a course? Click here

Eccentricity fluctuations from the Color Glass Condensate at RHIC and LHC

362   0   0.0 ( 0 )
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

In this brief note, we determine the fluctuations of the initial eccentricity in heavy-ion collisions caused by fluctuations of the nucleon configurations. This is done via a Monte-Carlo implementation of a Color Glass Condensate $k_t$-factorization approach. The eccentricity fluctuations are found to nearly saturate elliptic flow fluctuations measured recently at RHIC. Extrapolations to LHC energies are shown.



rate research

Read More

121 - H. Fujii , F. Gelis , A. Stasto 2007
The charged particle multiplicity in central AA collisions and the production of heavy flavors in pA collisions at the LHC is predicted in the CGC framework.
We perform a systematic study on the decorrelation of anisotropic flows along the pseudorapidity in relativistic heavy-ion collisions at the LHC and RHIC energies. The dynamical evolution of the QGP fireball is simulated via the CLVisc (ideal) (3+1)-dimensional hydrodynamics model, with the fully fluctuating initial condition from A-Multi-Phase-Transport (AMPT) model. Detailed analysis is performed on the longitudinal decorrelations of elliptic, triangular and quadrangular flows in terms of flow vectors, flow magnitudes and flow orientations (event planes). It is found that pure flow magnitudes have smaller longitudinal decorrelation than pure flow orientations, and the decorrelation of flow vectors is a combined effect of both flow magnitudes and orientations. The longitudinal decorrelation of elliptic flow has a strong and non-monotonic centrality dependence due to the initial elliptic collision geometry: smallest decorrelation in mid-central collisions. In contrast, the decorrelations of triangular and quadrangular flows have weak centrality dependence, slightly larger decorrelations in more peripheral collisions. Our numerical results for Pb+Pb collisions at the LHC are in good agreement with the ATLAS data, while our RHIC results predict much larger longitudinal decorrelations as compared to the LHC. We further analyze the longitudinal structures of the AMPT initial conditions and find that the final-state longitudinal decorrelation effects are strongly correlated with the lengths of the initial string structures in the AMPT model. The decorrelation effects are typically larger at lower collision energies and in more peripheral collisions due to shorter lengths of the string structures in the initial states.
Within five different approaches to parton propagation and energy loss in dense matter, a phenomenological study of experimental data on suppression of large $p_T$ single inclusive hadrons in heavy-ion collisions at both RHIC and LHC was carried out. The evolution of bulk medium used in the study for parton propagation was given by 2+1D or 3+1D hydrodynamic models which are also constrained by experimental data on bulk hadron spectra. Values for the jet transport parameter $hat q$ at the center of the most central heavy-ion collisions are extracted or calculated within each model, with parameters for the medium properties that are constrained by experimental data on the hadron suppression factor $R_{AA}$. For a quark with initial energy of 10 GeV we find that $hat qapprox 1.2 pm 0.3$ GeV$^2$/fm at an initial time $tau_0=0.6$ fm/$c$ in Au+Au collisions at $sqrt{s}=200$ GeV/n and $hat qapprox 1.9 pm 0.7 $ GeV$^2$/fm in Pb+Pb collisions at $sqrt{s}=2.76 $ TeV/n. Compared to earlier studies, these represent significant convergence on values of the extracted jet transport parameter, reflecting recent advances in theory and the availability of new experiment data from the LHC.
When probed at very high energies or small Bjorken x_bj, QCD degrees of freedom manifest themselves as a medium of dense gluon matter called the Color Glass Condensate. Its key property is the presence of a density induced correlation length or inverse saturation scale R_s=1/Q_s. Energy dependence of observables in this regime is calculable through evolution equations, the JIMWLK equations, and characterized by scaling behavior in terms of Q_s. These evolution equations share strong parallels with specific counterparts in jet physics. Experimental relevance ranges from lepton proton and lepton nucleus collisions to heavy ion collisions and cross correlates physics at virtually all modern collider experiments.
Fluctuations in the initial state of heavy-ion collisions are larger at RHIC energy than at LHC energy. This fact can be inferred from recent measurements of the fluctuations of the particle multiplicities and of elliptic flow performed at the two different energies. We show that an analytical description of the initial energy-density field and its fluctuations motivated by the color glass condensate (CGC) effective theory predicts and quantitatively captures the measured energy evolution of these observables. The crucial feature is that fluctuations in the CGC scale like the inverse of the saturation scale of the nuclei.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا