Do you want to publish a course? Click here

The evolution of density perturbations in f(R) gravity

323   0   0.0 ( 0 )
 Added by Sante Carloni
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We give a rigorous and mathematically well defined presentation of the Covariant and Gauge Invariant theory of scalar perturbations of a Friedmann-Lemaitre-Robertson-Walker universe for Fourth Order Gravity, where the matter is described by a perfect fluid with a barotropic equation of state. The general perturbations equations are applied to a simple background solution of R^n gravity. We obtain exact solutions of the perturbations equations for scales much bigger than the Hubble radius. These solutions have a number of interesting features. In particular, we find that for all values of n there is always a growing mode for the density contrast, even if the universe undergoes an accelerated expansion. Such a behaviour does not occur in standard General Relativity, where as soon as Dark Energy dominates, the density contrast experiences an unrelenting decay. This peculiarity is sufficiently novel to warrant further investigation on fourth order gravity models.



rate research

Read More

180 - K. Bamba 2013
A generic feature of viable exponential $F(R)$-gravity is investigated. An additional modification to stabilize the effective dark energy oscillations during matter era is proposed and applied to two viable models. An analysis on the future evolution of the universe is performed. Furthermore, a unified model for early and late-time acceleration is proposed and studied.
140 - Diego Saez-Gomez 2012
One of the so-called viable modified gravities is analyzed. This kind of gravity theories are characterized by a well behavior at local scales, where General Relativity is recovered, while the modified terms become important at the cosmological level, where the late-time accelerating era is reproduced, and even the inflationary phase. In the present work, the future cosmological evolution for one of these models is studied. A transition to the phantom phase is observed. Furthermore, the scalar-tensor equivalence of f(R) gravity is also considered, which provides important information concerning this kind of models.
The article presents modeling of inflationary scenarios for the first time in the $f(R,T)$ theory of gravity. We assume the $f(R,T)$ functional from to be $R + eta T$, where $R$ denotes the Ricci scalar, $T$ the trace of the energy-momentum tensor and $eta$ the model parameter (constant). We first investigated an inflationary scenario where the inflation is driven purely due to geometric effects outside of GR. We found the inflation observables to be independent of the number of e-foldings in this setup. The computed value of the spectral index is consistent with latest Planck 2018 dataset while the scalar to tensor ratio is a bit higher. We then proceeded to analyze the behavior of an inflation driven by $f(R,T)$ gravity coupled with a real scalar field. By taking the slow-roll approximation, we generated interesting scenarios where a Klein Gordon potential leads to observationally consistent inflation observables. Our results makes it clear-cut that in addition to the Ricci scalar and scalar fields, the trace of energy momentum tensor also play a major role in driving inflationary scenarios.
Taking advantage of the conformal equivalence of f(R) theories of gravity with General Relativity coupled to a scalar field we generalize the Israel junction conditions for this class of theories by direct integration of the field equations. We suggest a specific non-minimal coupling of matter to gravity which opens the possibility of a new class of braneworld scenarios.
We point out that there are only three polarizations for gravitational waves in $f(R)$ gravity, and the polarization due to the massive scalar mode is a mix of the pure longitudinal and transverse breathing polarization. The classification of the six polarizations by the Newman-Penrose quantities is based on weak, plane and null gravitational waves, so it is not applicable to the massive mode.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا