Do you want to publish a course? Click here

Disappearance of Squeezed Back-to-Back Correlations - a new signal of hadron freeze-out from a supercooled Quark Gluon Plasma

152   0   0.0 ( 0 )
 Added by Tamas Csorgo
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

We briefly discuss four different possible types of transitions from quark to hadronic matter and their characteristic signatures in terms of correlations. We also highlight the effects arising from mass modification of hadrons in hot and dense hadronic matter, as well as their quantum statistical consequences: the appearance of squeezed quantum states and the associated experimental signatures, i.e., the back-to-back correlations of particle - anti-particle pairs. We briefly review the theoretical results of these squeezed quanta, generated by in-medium modified masses, starting from the first indication of the existence of surprising particle - anti-particle correlations, and ending by considering the effects of chiral dynamics on these correlation patterns. A prerequisite for such a signature is the experimental verification that these theoretically predicted back-to-back correlation of particle anti-particle pairs are, in fact, observable in high energy heavy ion reactions. Therefore, the experimental observation of back-to-back correlations in high energy heavy ion reactions would be a unique signature, proving the existence of in-medium mass modification of hadronic states. On the other hand, their disappearance at some threshold centrality or collision energy would indicate that the hadron formation mechanism would have qualitatively changed: asymptotic hadrons above such a threshold are not formed from medium modified hadrons anymore, but rather by new degrees of freedom characterizing the medium. Furthermore, the disappearance of the squeezed BBC could also serve as a signature of a sudden, non-equilibrium hadronization scenario from a supercooled quark-gluon plasma phase.



rate research

Read More

The fast simultaneous hadronization and chemical freeze out of supercooled quark-gluon plasma, created in relativistic heavy ion collisions, leads to the re-heating of the expanding matter and to the change in a collective flow profile. We use the assumption of statistical nature of the hadronization process, and study quantitatively the freeze out in the framework of hydrodynamical Bjorken model with different quark-gluon plasma equations of state.
Back-to-Back Correlations of particle-antiparticle pairs are related to the in-medium mass-modification and squeezing of the quanta involved. They are predicted to appear when hot and dense hadronic matter is formed in high energy nucleus-nucleus collisions. The survival and magnitude of the Back-to-Back Correlations of boson-antiboson pairs generated by in-medium mass modifications are studied here in the case of a thermalized, finite-sized, spherically symmetric expanding medium. We show that the BBC signal indeed survives the finite-time emission, as well as the expansion and flow effects, with sufficient intensity to be observed at RHIC.
The photon emission from a non-equilibrium quark-gluon plasma (QGP) is analyzed. We derive an integral equation that describes photon production through quark-antiquark annihilation and quark bremsstrahlung. It includes coherence between different scattering sites, also known as the Landau-Pomeranchuk-Migdal effect. These leading-order processes are studied for the first time together in an out-of-equilibrium field theoretical treatment that enables the inclusion of viscous corrections to the calculation of electromagnetic emission rates. In the special case of an isotropic, viscous, plasma the integral equation only depends on three constants which capture the non-equilibrium nature of the medium.
We investigate the hadron production from the vortical quark-gluon plasma created in heavy-ion collisions. Based on the quark-coalescence and statistical hadronization models, we show that total hadron yields summed over the spin components are enhanced by the local vorticity with quadratic dependence. The enhancement factor amounts to be a few percent and may be detectable within current experimental sensitivities. We also show that the effect is stronger for hadrons with larger spin, and thus propose a new signature of the local vorticity, which may be detected by the yield ratio of distinct hadron species having different spins such as $phi$ and $eta$. The vorticity dependence of hadron yields seems robust, with consistent predictions in both of the hadron production mechanisms for reasonable values of the vorticity strength estimated for heavy-ion collisions.
Here we present several remarkable irregularities at chemical freeze-out which are found using an advanced version of the hadron resonance gas model. The most prominent of them are the sharp peak of the trace anomaly existing at chemical freeze-out at the center of mass energy 4.9 GeV and two sets of highly correlated quasi-plateaus in the collision energy dependence of the entropy per baryon, total pion number per baryon, and thermal pion number per baryon which we found at the center of mass energies 3.8-4.9 GeV and 7.6-10 GeV. The low energy set of quasi-plateaus was predicted a long time ago. On the basis of the generalized shock-adiabat model we demonstrate that the low energy correlated quasi-plateaus give evidence for the anomalous thermodynamic properties inside the quark-gluon-hadron mixed phase. It is also shown that the trace anomaly sharp peak at chemical freeze-out corresponds to the trace anomaly peak at the boundary between the mixed phase and quark gluon plasma. We argue that the high energy correlated quasi-plateaus may correspond to a second phase transition and discuss its possible origin and location. Besides we suggest two new observables which may serve as clear signals of these phase transformations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا