Do you want to publish a course? Click here

The Incidence of Highly-Obscured Star-Forming Regions in SINGS Galaxies

473   0   0.0 ( 0 )
 Added by Moire Prescott
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

No English abstract



rate research

Read More

220 - J. E. Young 2013
We present a study of the morphology and intensity of star formation in the host galaxies of eight Palomar-Green quasars using observations with the Hubble Space Telescope. Our observations are motivated by recent evidence for a close relationship between black hole growth and the stellar mass evolution in its host galaxy. We use narrow-band [O II] $lambda$3727, H$beta$, [O III] $lambda$5007 and Pa$alpha$ images, taken with the WFPC2 and NICMOS instruments, to map the morphology of line-emitting regions, and, after extinction corrections, diagnose the excitation mechanism and infer star-formation rates. Significant challenges in this type of work are the separation of the quasar light from the stellar continuum and the quasar-excited gas from the star-forming regions. To this end, we present a novel technique for image decomposition and subtraction of quasar light. Our primary result is the detection of extended line-emitting regions with sizes ranging from 0.5 to 5 kpc and distributed symmetrically around the nucleus, powered primarily by star formation. We determine star-formation rates of order a few tens of M$_odot$/yr. The host galaxies of our target quasars have stellar masses of order $10^{11}$ M$_odot$ and specific star formation rates on a par with those of M82 and luminous infrared galaxies. As such they fall at the upper envelope or just above the star-formation mass sequence in the specific star formation vs stellar mass diagram. We see a clear trend of increasing star formation rate with quasar luminosity, reinforcing the link between the growth of the stellar mass of the host and the black hole mass found by other authors.
We present wide-field JHKs-band photometric observations of the three compact HII regions G48.9-0.3, G49.0-0.3, and G49.2-0.3 in the active star-forming region W51B. The star clusters inside the three compact HII regions show the excess number of stars in the J-Ks histograms compared with reference fields. While the mean color excess ratio E(J-H)/E(H-Ks) of the three compact HII regions are similar to ~ 2.07, the visual extinctions toward them are somewhat different: ~ 17 mag for G48.9-0.3 and G49.0-0.3; ~ 23 mag for G49.2-0.3. Based on their sizes and brightnesses, we suggest that the age of each compact HII region is =< 2 Myr. The inferred total stellar mass, ~ 1.4 x 10^4 M_sun, of W51B makes it one of the most active star forming regions in the Galaxy with the star formation efficiency of ~ 10 %.
We study the properties of a sample of 211 heavily-obscured Active Galactic Nucleus (AGN) candidates in the Extended Chandra Deep Field-South selecting objects with f_24/f_R>1000 and R-K>4.5. Of these, 18 were detected in X-rays and found to be obscured AGN with neutral hydrogen column densities of ~10^23 cm^-2. In the X-ray undetected sample, the following evidence suggests a large fraction of heavily-obscured (Compton Thick) AGN: (i) The stacked X-ray signal of the sample is strong, with an observed ratio of soft to hard X-ray counts consistent with a population of ~90% heavily obscured AGN combined with 10% star-forming galaxies. (ii) The X-ray to mid-IR ratios for these sources are significantly larger than that of star-forming galaxies and ~2 orders of magnitude smaller than for the general AGN population, suggesting column densities of N_H>5x10^24 cm^-2. (iii) The Spitzer near- and mid-IR colors of these sources are consistent with those of the X-ray-detected sample if the effects of dust self-absorption are considered. Spectral fitting to the rest-frame UV/optical light (dominated by the host galaxy) returns stellar masses of ~10^11 M_sun and <E(B-V)> =0.5, and reveals evidence for a significant young stellar population, indicating that these sources are experiencing considerable star-formation. This sample of heavily-obscured AGN candidates implies a space density at z~2 of ~10^-5 Mpc^-3, finding a strong evolution in the number of L_X>10^44 erg/s sources from z=1.5 to 2.5, possibly consistent with a short-lived heavily-obscured phase before an unobscured quasar is visible.
Maser emission plays an important role as a tool in star formation studies. It is widely used for deriving kinematics, as well as the physical conditions of different structures, hidden in the dense environment very close to the young stars, for example associated with the onset of jets and outflows. We will summarize the recent observational and theoretical progress on this topic since the last maser symposium: the IAU Symposium 242 in Alice Springs.
Using results from high-resolution galaxy formation simulations in a standard Lambda-CDM cosmology and a fully conservative multi-resolution radiative transfer code around point sources, we compute the energy-dependent escape fraction of ionizing photons from a large number of star forming regions in two galaxies at five different redshifts from z=3.8 to 2.39. All escape fractions show a monotonic decline with time, from (at the Lyman-limit) ~6-10% at z=3.6 to ~1-2% at z=2.39, due to higher gas clumping at lower redshifts. It appears that increased feedback can lead to higher f_esc at z>3.4 via evacuation of gas from the vicinity of star forming regions and to lower f_esc at z<2.39 through accumulation of swept-up shells in denser environments. Our results agree well with the observational findings of citet{inoue..06} on redshift evolution of f_esc in the redshift interval z=2-3.6.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا