Do you want to publish a course? Click here

Summing Pomeron loops in the dipole approach

104   0   0.0 ( 0 )
 Added by Eugene Levin
 Publication date 2007
  fields
and research's language is English
 Authors E. Levin




Ask ChatGPT about the research

In this paper we argue that in the kinematic range given by $ 1 ll ln(1/as^2) ll as Y ll frac{1}{as}$, we can reduce the Pomeron calculus to the exchange of non-interacting Pomerons with the renormalized amplitude of their interaction with the target. Therefore, the summation of the Pomeron loops can be performed using the improved Mueller, Patel, Salam and Iancu approximation and this leads to the geometrical scaling solution. This solution is found for the simplified BFKL kernel. We reproduce the findings of Hatta and Mueller that there are overlapping singularities. We suggest a way of dealing with these singularities.



rate research

Read More

53 - Arif I. Shoshi 2006
We have recently studied the QCD pomeron loop evolution equations in zero transverse dimensions [Shoshi:2005pf]. Using the techniques developed in [Shoshi:2005pf] together with the AGK cutting rules, we present a calculation of single, double and central diffractive cross sections (for large diffractive masses and large rapidity gaps) in zero transverse dimensions in which all dominant pomeron loop graphs are consistently summed. We find that the diffractive cross sections unitarise at asymptotic energies and that they are suppressed by powers of alpha_s. Our calculation is expected to expose some of the diffractive physics in hadron-hadron collisions at high energy.
In this paper we encode the perturbative BFKL leading logarithmic resummation, relevant for the Regge limit behavior of QCD scattering amplitudes, in the IR-regulated effective action which satisfies exact functional renormalization group equations. This is obtained using a truncation with a specific infinite set of non local vertices describing the multi-Regge kinematics (MRK). The goal is to use this framework to study, in the high energy limit and at larger transverse distances the transition to a much simpler effective local reggeon field theory, whose critical properties were recently investigated in the same framework. We perform a numerical analysis of the spectrum of the BFKL Pomeron deformed by the introduction of a Wilsonian infrared regulator to understand the properties of the leading poles (states) contributing to the high energy scattering.
102 - R. Fiore 2015
A Regge pole model for Pomeron-Pomeron total cross section in the resonance region $sqrt{M^2}le$ 5 GeV is presented. The cross section is saturated by direct-channel contributions from the Pomeron as well as from two different $f$ trajectories, accompanied by the isolated f$_0(500)$ resonance which dominates the $sqrt{M^{2}}lesssim 1$ GeV region. A slowly varying background is taken into account. The calculated Pomeron-Pomeron total cross section cannot be measured directly, but is an essential part of central diffractive processes. In preparation of future calculations of central resonance production at the hadron level, and corresponding measurements at the LHC, we normalize the Pomeron-Pomeron cross section at large masses $sigma_{t}^{PP} (sqrt{M^2}rightarrow infty) approx$ 1 mb as suggested by QCD-motivated estimates.
A model for Pomeron-Pomeron total cross section in the resonance region $sqrt{M^{2}} le$ 5 GeV is presented. This model is based on Regge poles from the Pomeron and two different $f$ trajectories, and includes the isolated f$_{0}(500)$ resonance in the region $sqrt{M^{2}}lesssim 1$ GeV. A slowly varying background is included. The presented Pomeron-Pomeron cross section is not directly measurable, but is an essential ingredient for calculating exclusive resonance production at the LHC.
We explain why it is possible to formulate a wide variety of high energy (small-x) photon-proton processes in terms of a universal dipole cross section and compare and contrast various parameterizations of this function that exist in the literature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا