Do you want to publish a course? Click here

Mapping of spin lifetimes to electronic states in n-type GaAs near the metal-insulator transition

103   0   0.0 ( 0 )
 Added by Bernd Beschoten
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The longest spin lifetimes in bulk n-GaAs exceed 100 ns for doping concentrations near the metal-insulator transition (J.M. Kikkawa, D.D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998)). The respective electronic states have yet not been identified. We therefore investigate the energy dependence of spin lifetimes in n-GaAs by time-resolved Kerr rotation. Spin lifetimes vary by three orders of magnitude as a function of energy when occupying donor and conduction band states. The longest spin lifetimes (>100 ns) are assigned to delocalized donor band states, while conduction band states exhibit shorter spin lifetimes. The occupation of localized donor band states is identified by short spin lifetimes (~300 ps) and a distinct Overhauser shift due to dynamic nuclear polarization.



rate research

Read More

We perform combined resistivity and compressibility studies of two-dimensional hole and electron systems which show the apparent metal-insulator transition - a crossover in the sign of dR/dT with changing density. No thermodynamic anomalies have been detected in the crossover region. Instead, despite a ten-fold difference in r_s, the compressibility of both electrons and holes is well described by the theory of nonlinear screening of the random potential. We show that the resistivity exhibits a scaling behavior near the percolation threshold found from analysis of the compressibility. Notably, the percolation transition occurs at a much lower density than the crossover.
116 - Wentao Hu , Ke Yang , Xuan Wen 2021
Cobaltates have rich spin-states and diverse properties. Using spin-state pictures and firstprinciples calculations, here we study the electronic structure and magnetism of the mixed-valent double perovskite YBaCo2O6. We find that YBaCo2O6 is in the formal intermediate-spin (IS) Co3+/low-spin (LS) Co4+ ground state. The hopping of eg electron from IS-Co3+ to LS-Co4+ via double exchange gives rise to a ferromagnetic half-metallicity, which well accounts for the recent experiments. The reduction of both magnetization and Curie temperature by oxygen vacancies is discussed, aided with Monte Carlo simulations. We also explore several other possible spin-states and their interesting electronic/magnetic properties. Moreover, we predict that a volume expansion more than 3% would tune YBaCo2O6 into the high-spin (HS) Co3+/LS Co4+ ferromagnetic state and simultaneously drive a metal-insulator transition. Therefore, spin-states are a useful parameter for tuning the material properties of cobaltates.
We start by analyzing experimental data of Spinelli [A. Spinelli, M. A. Torija, C. Liu, C. Jan, and C. Leighton, Phys. Rev. B 81, 155110 (2010)] for conductivity of $n$-type bulk crystals of SrTiO$_3$ (STO) with broad electron concentration $n$ range of $4times 10^{15}$ - $4 times10^{20} $ cm$^{-3}$, at low temperatures. We obtain good fit of the conductivity data, $sigma(n)$, by the Drude formula for $n geq n_c simeq 3 times 10^{16} $ cm$^{-3}$ assuming that used for doping insulating STO bulk crystals are strongly compensated and the total concentration of background charged impurities is $N = 10^{19}$ cm$^{-3}$. At $n< n_c$, the conductivity collapses with decreasing $n$ and the Drude theory fit fails. We argue that this is the metal-insulator transition (MIT) in spite of the very large Bohr radius of hydrogen-like donor state $a_B simeq 700$ nm with which the Mott criterion of MIT for a weakly compensated semiconductor, $na_B^3 simeq 0.02$, predicts $10^{5}$ times smaller $n_c$. We try to explain this discrepancy in the framework of the theory of the percolation MIT in a strongly compensated semiconductor with the same $N=10^{19}$ cm$^{-3}$. In the second part of this paper, we develop the percolation MIT theory for films of strongly compensated semiconductors. We apply this theory to doped STO films with thickness $d leq 130$ nm and calculate the critical MIT concentration $n_c(d)$. We find that, for doped STO films on insulating STO bulk crystals, $n_c(d)$ grows with decreasing $d$. Remarkably, STO films in a low dielectric constant environment have the same $n_c(d)$. This happens due to the Rytova-Keldysh modification of a charge impurity potential which allows a larger number of the film charged impurities to contribute to the random potential.
The electrodynamics near the metal-to-insulator transitions (MIT) induced, in V3O5 single crystals, by both temperature (T) and pressure (P) has been studied by infrared spectroscopy. The T- and P-dependence of the optical conductivity may be explained within a polaronic scenario. The insulating phase at ambient T and P corresponds to strongly localized small polarons. Meanwhile the T-induced metallic phase at ambient pressure is related to a liquid of polarons showing incoherent dc transport, in the P-induced metallic phase at room T strongly localized polarons coexist with partially delocalized ones. The electronic spectral weight is almost recovered, in both the T and P induced metallization processes, on an energy scale of 1 eV, thus supporting the key-role of electron-lattice interaction in the V3O5 metal-to-insulator transition.
We observe an insulator-to-metal (I-M) transition in crystalline silicon doped with sulfur to non- equilibrium concentrations using ion implantation followed by pulsed laser melting and rapid resolidification. This I-M transition is due to a dopant known to produce only deep levels at equilibrium concentrations. Temperature-dependent conductivity and Hall effect measurements for temperatures T > 1.7 K both indicate that a transition from insulating to metallic conduction occurs at a sulfur concentration between 1.8 and 4.3 x 10^20 cm-3. Conduction in insulating samples is consistent with variable range hopping with a Coulomb gap. The capacity for deep states to effect metallic conduction by delocalization is the only known route to bulk intermediate band photovoltaics in silicon.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا