No Arabic abstract
Following an extensive survey of the galactic plane by the INTEGRAL satellite, new hard X-ray sources are discovered with a significant fraction of Cataclysmic Variables (CVs) among them. We report here the identification of one of these hard X-ray sources, IGR J00234+6141, as an accreting magnetic white dwarf of intermediate polar type. We analyse the high energy emission of the INTEGRAL source using all available data and provide complementary optical photometric and spectroscopic data obtained respectively in August and October 2006. Based on a refined INTEGRAL position, we confirm the proposed optical identification. We clearly detect the presence of a 564 s periodic optical modulation that we identify as the rotation of the white dwarf. The analysis of the optical spectrum also demonstrates that the emission lines show a modulation in radial velocity with an orbital period of Porb = (4.033 +/- 0.005) hr. The two periodicities indicate that IGR00234+6141 is a magnetic CV of the intermediate polar type. This is one of the faintest and hardest sources of this type detected by INTEGRAL. This confirms earlier conclusions that IPs contribute significantly to the population of galactic X-ray sources and represent a significant fraction of the high energy background.
We present the results of our optical identification of the X-ray source IGR J16547-1916 detected by the INTEGRAL observatory during a deep all-sky survey. Analysis of the spectroscopic data from the SWIFT and INTEGRAL observatories in the X-ray energy band and from the BTA (Special Astrophysical Observatory) telescope in the optical band has shown that the source is most likely an intermediate polar -- an accreting white dwarf with the mass of M~0.85 M_Sun in a low-mass binary system. Subsequent studies of the objects rapid variability with the RTT-150 telescope have confirmed this conclusion by revealing periodic pulsations of its optical emission with a period of ~550 s.
IGR J19140+0951 (formerly known as IGR J19140+098) was discovered with the INTEGRAL satellite in March 2003. We report the details of the discovery, using an improved position for the analysis. We have performed a simultaneous study of the 5-100 keV JEM-X and ISGRI spectra from which we can distinguish two different states. From the results of our analysis we propose that IGR J19140+0951 is a persistent Galactic X-ray binary, probably hosting a neutron star although a black hole cannot be completely ruled out.
A significant number of cataclysmic variables were detected as hard X-ray sources in the INTEGRAL survey, most of them of the magnetic intermediate polar type. We present a detailed X-ray broad-band study of two new sources, IGR J00234+6141 and 1RXS J213344.1+510725, that allow us to classify them as secure members of the intermediate polar class. Timing and spectral analysis of IGR J00234+6141 are based on a XMM-Newton observation and INTEGRAL publicly available data. For 1RXS J213344.1+510725 we use XMM-Newton and Suzaku observations at different epochs, as well as INTEGRAL publicly available data. We determine a spin period of 561.64 +/- 0.56 s for the white dwarf in IGR J00234+6141. The X-ray pulses are observed up to about 2 keV. From XMM-Newton and Suzaku observations of 1RXS J213344.1+510725, we find a rotational period of 570.862 +/- 0.034 s. The observations span three epochs where the pulsation is observed to change at different energies both in amplitude and shape. In both objects, the spectral analysis spanned over a wide energy range, from 0.3 to 100 keV, shows the presence of multiple emission components absorbed by dense material. The X-ray spectrum of IGR J00234+6141 is consistent with a multi-temperature plasma with a maximum temperature of about 50 keV. In 1RXS J213344.1+510725, multiple optically thin components are inferred, as well as an optically thick (blackbody) soft X-ray emission with a temperature of about 100 eV. This latter adds 1RXS J213344.1+510725 to the growing group of soft X-ray intermediate polars. (abridged)
IGR J19140+098 (SIMBAD corrected name IGR J19140+0951) is a new X-ray transient, discovered by INTEGRAL during an observation of GRS 1915+015. The source presents strong variations on timescales from seconds to days. We present results of multiwavelength observations, including spectral analysis of INTEGRAL observations, and propose that IGR J19140+098 is a Galactic X-ray binary. Further classification of the source is also discussed.
We present here the main characteristics of the BHC IGR J17091-3624 outbursts occurred several times since 1994. Since 2003, the source has been extensively observed by INTEGRAL and Swift. In particular, we report results on the last 2011 outburst that showed a rare variability behaviour observed before only in the galactic BH GRS 1915+105 but at a different level of flux. Several hypotheses have been proposed in order to explain this particular behaviour. They are all discussed here, in the light of their apparent contradiction. Finally, based on all available informations, we attempt to give an overall view of this enigmatic source and we speculate on the evolutionary state of the binary system.