Do you want to publish a course? Click here

Evolutionary stability in quantum games

106   0   0.0 ( 0 )
 Added by Azhar Iqbal
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

In evolutionary game theory an Evolutionarily Stable Strategy (ESS) is a refinement of the Nash equilibrium concept that is sometimes also recognized as evolutionary stability. It is a game-theoretic model, well known to mathematical biologists, that was found quite useful in the understanding of evolutionary dynamics of a population. This chapter presents an analysis of evolutionary stability in the emerging field of quantum games.



rate research

Read More

We provide a classification of symmetric three-player games with two strategies and investigate evolutionary and asymptotic stability (in the replicator dynamics) of their Nash equilibria. We discuss similarities and differences between two-player and multi-player games. In particular, we construct examples which exhibit a novel behavior not found in two-player games.
Rock is wrapped by paper, paper is cut by scissors, and scissors are crushed by rock. This simple game is popular among children and adults to decide on trivial disputes that have no obvious winner, but cyclic dominance is also at the heart of predator-prey interactions, the mating strategy of side-blotched lizards, the overgrowth of marine sessile organisms, and the competition in microbial populations. Cyclical interactions also emerge spontaneously in evolutionary games entailing volunteering, reward, punishment, and in fact are common when the competing strategies are three or more regardless of the particularities of the game. Here we review recent advances on the rock-paper-scissors and related evolutionary games, focusing in particular on pattern formation, the impact of mobility, and the spontaneous emergence of cyclic dominance. We also review mean-field and zero-dimensional rock-paper-scissors models and the application of the complex Ginzburg-Landau equation, and we highlight the importance and usefulness of statistical physics for the successful study of large-scale ecological systems. Directions for future research, related for example to dynamical effects of coevolutionary rules and invasion reversals due to multi-point interactions, are outlined as well.
125 - Naoki Kobayashi 2007
A framework for discussing relationships between different types of games is proposed. Within the framework, quantum simultaneous games, finite quantum simultaneous games, quantum sequential games, and finite quantum sequential games are defined. In addition, a notion of equivalence between two games is defined. Finally, the following three theorems are shown: (1) For any quantum simultaneous game G, there exists a quantum sequential game equivalent to G. (2) For any finite quantum simultaneous game G, there exists a finite quantum sequential game equivalent to G. (3) For any finite quantum sequential game G, there exists a finite quantum simultaneous game equivalent to G.
114 - S.J. van Enk , R. Pike 2002
We consider two aspects of quantum game theory: the extent to which the quantum solution solves the original classical game, and to what extent the new solution can be obtained in a classical model.
103 - A. Iqbal , A.H. Toor 2002
In a two-stage repeated classical game of prisoners dilemma the knowledge that both players will defect in the second stage makes the players to defect in the first stage as well. We find a quantum version of this repeated game where the players decide to cooperate in the first stage while knowing that both will defect in the second.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا