Do you want to publish a course? Click here

Quantum repeated games

104   0   0.0 ( 0 )
 Added by Azhar Iqbal
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

In a two-stage repeated classical game of prisoners dilemma the knowledge that both players will defect in the second stage makes the players to defect in the first stage as well. We find a quantum version of this repeated game where the players decide to cooperate in the first stage while knowing that both will defect in the second.



rate research

Read More

The notion of emph{policy regret} in online learning is a well defined? performance measure for the common scenario of adaptive adversaries, which more traditional quantities such as external regret do not take into account. We revisit the notion of policy regret and first show that there are online learning settings in which policy regret and external regret are incompatible: any sequence of play that achieves a favorable regret with respect to one definition must do poorly with respect to the other. We then focus on the game-theoretic setting where the adversary is a self-interested agent. In that setting, we show that external regret and policy regret are not in conflict and, in fact, that a wide class of algorithms can ensure a favorable regret with respect to both definitions, so long as the adversary is also using such an algorithm. We also show that the sequence of play of no-policy regret algorithms converges to a emph{policy equilibrium}, a new notion of equilibrium that we introduce. Relating this back to external regret, we show that coarse correlated equilibria, which no-external regret players converge to, are a strict subset of policy equilibria. Thus, in game-theoretic settings, every sequence of play with no external regret also admits no policy regret, but the converse does not hold.
69 - Yingkai Li , Harry Pei 2020
We examine a patient players behavior when he can build reputations in front of a sequence of myopic opponents. With positive probability, the patient player is a commitment type who plays his Stackelberg action in every period. We characterize the patient players action frequencies in equilibrium. Our results clarify the extent to which reputations can refine the patient players behavior and provide new insights to entry deterrence, business transactions, and capital taxation. Our proof makes a methodological contribution by establishing a new concentration inequality.
We investigate the effect of conditional null measurements on a quantum system and find a rich variety of behaviors. Specifically, quantum dynamics with a time independent $H$ in a finite dimensional Hilbert space are considered with repeated strong null measurements of a specified state. We discuss four generic behaviors that emerge in these monitored systems. The first arises in systems without symmetry, along with their associated degeneracies in the energy spectrum, and hence in the absence of dark states as well. In this case, a unique final state can be found which is determined by the largest eigenvalue of the survival operator, the non-unitary operator encoding both the unitary evolution between measurements and the measurement itself. For a three-level system, this is similar to the well known shelving effect. Secondly, for systems with built-in symmetry and correspondingly a degenerate energy spectrum, the null measurements dynamically select the degenerate energy levels, while the non-degenerate levels are effectively wiped out. Thirdly, in the absence of dark states, and for specific choices of parameters, two or more eigenvalues of the survival operator match in magnitude, and this leads to an oscillatory behavior controlled by the measurement rate and not solely by the energy levels. Finally, when the control parameters are tuned, such that the eigenvalues of the survival operator all coalesce to zero, one has exceptional points that corresponds to situations that violate the null measurement condition, making the conditional measurement process impossible.
136 - Naoki Kobayashi 2007
A framework for discussing relationships between different types of games is proposed. Within the framework, quantum simultaneous games, finite quantum simultaneous games, quantum sequential games, and finite quantum sequential games are defined. In addition, a notion of equivalence between two games is defined. Finally, the following three theorems are shown: (1) For any quantum simultaneous game G, there exists a quantum sequential game equivalent to G. (2) For any finite quantum simultaneous game G, there exists a finite quantum sequential game equivalent to G. (3) For any finite quantum sequential game G, there exists a finite quantum simultaneous game equivalent to G.
67 - A. Iqbal , A.H. Toor 2001
We study two forms of a symmetric cooperative game played by three players, one classical and other quantum. In its classical form making a coalition gives advantage to players and they are motivated to do so. However in its quantum form the advantage is lost and players are left with no motivation to make a coalition.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا