Do you want to publish a course? Click here

Grain Retention and Formation of Planetesimals near the Snow Line in MRI-driven Turbulent Protoplanetary Disks

135   0   0.0 ( 0 )
 Added by Katherine Kretke
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The first challenge in the formation of both terrestrial planets and the cores of gas giants is the retention of grains in protoplanetary disks. In most regions of these disks, gas attains sub-Keplerian speeds as a consequence of a negative pressure gradient. Hydrodynamic drag leads to orbital decay and depletion of the solid material in the disk, with characteristic timescales as short as only a few hundred years for meter-sized objects at 1 AU. In this paper, we suggest a particle retention mechanism which promotes the accumulation of grains and the formation of planetesimals near the water sublimation front or ``snow line. This model is based on the assumption that, in the regions most interesting for planet formation, the viscous evolution of the disk is due to turbulence driven by the magneto-rotational instability (MRI) in the surface layers of the disk. The depth to which MRI effectively generates turbulence is a strong function of the grain size and abundance. A sharp increase in the grain-to-gas density ratio across the snow line reduces the column depth of the active layer. As the disk evolves towards a quasi-steady-state, this change in the active layer creates a local maximum in radial distribution of the gas surface density and pressure, causing the gas to rotate at super-Keplerian speed and halting the inward migration of grains. This senario presents a robust process for grain retention which may aid in the formation of proto-gas-giant cores preferentially near the snow line.



rate research

Read More

91 - Ziyan Xu , Xue-Ning Bai 2021
Planetesimal formation is a crucial yet poorly understood process in planet formation. It is widely believed that planetesimal formation is the outcome of dust clumping by the streaming instability (SI). However, recent analytical and numerical studies have shown that the SI can be damped or suppressed by external turbulence, and at least the outer regions of protoplanetary disks are likely weakly turbulent due to magneto-rotational instability (MRI). We conduct high-resolution local shearing-box simulations of hybrid particle-gas magnetohydrodynamics (MHD), incorporating ambipolar diffusion as the dominant non-ideal MHD effect, applicable to outer disk regions. We first show that dust backreaction enhances dust settling towards the midplane by reducing turbulence correlation time. Under modest level of MRI turbulence, we find that dust clumping is in fact easier than the conventional SI case, in the sense that the threshold of solid abundance for clumping is lower. The key to dust clumping includes dust backreaction and the presence of local pressure maxima, which in our work is formed by the MRI zonal flows overcoming background pressure gradient. Overall, our results support planetesimal formation in the MRI-turbulent outer protoplanetary disks, especially in ring-like substructures.
The low water content of the terrestrial planets in the solar system suggests that the protoplanets formed within the water snow line. Accurate prediction of the snow line location moving with time provides a clue to constrain the formation process of the planets. In this paper, we investigate the migration of the snow line in protoplanetary disks whose accretion is controlled by laminar magnetic fields, which have been proposed by various nonideal magnetohydrodynamic (MHD) simulations. We propose an empirical model of the disk temperature based on our nonideal MHD simulations, which show that the accretion heating is significantly less efficient than in turbulent disks, and calculate the snow line location over time. We find that the snow line in the magnetically accreting laminar disks moves inside the current Earths orbit within 1 Myr after star formation, whereas the time for the conventional turbulent disk is much longer than 1 Myr. This result suggests that either the rocky protoplanets formed in such an early phase of the disk evolution, or the protoplanets moved outward to the current orbits after they formed close to the protosun.
We investigate dust growth due to settling in a 1D vertical column of a protoplanetary disk. It is known from the observed 10 micron feature in disk SEDs, that small micron-sized grains are present at the disk atmosphere throughout the lifetime of the disk. We hope to explain such questions as what process can keep the disk atmospheres dusty for the lifetime of the disk and how does the particle properties change as a function of height above the midplane. We use a Monte Carlo code to follow the mass and porosity evolution of the particles in time. The used collision model is based on laboratory experiments performed on dust aggregates. As the experiments cannot cover all possible collision scenarios, the largest uncertainty of our model is the necessary extrapolations we had to perform. We simultaneously solve for the particle growth and motion. Particles can move vertically due to settling and turbulent mixing. We assume that the vertical profile of the gas density is fixed in time and only the solid component evolves. We find that the used collision model strongly influences the masses and sizes of the particles. The laboratory experiment based collision model greatly reduces the particle sizes compared to models that assume sticking at all collision velocities. We find that a turbulence parameter of alpha = 10^-2 is needed to keep the dust atmospheres dusty, but such strong turbulence can produce only small particles at the midplane which is not favorable for planetesimal formation models. We also see that the particles are larger at the midplane and smaller at the upper layers of the disk. At 3-4 pressure scale heights micron-sized particles are produced. These particle sizes are needed to explain the 10 micron feature of disk SEDs. Turbulence may therefore help to keep small dust particles in the disk atmosphere.
Content: For up to a few millions of years, pebbles must provide a quasi-steady inflow of solids from the outer parts of protoplanetary disks to their inner regions. Aims: We wish to understand how a significant fraction of the pebbles grows into planetesimals instead of being lost to the host star. Methods:We examined analytically how the inward flow of pebbles is affected by the snow line and under which conditions dust-rich (rocky) planetesimals form. When calculating the inward drift of solids that is due to gas drag, we included the back-reaction of the gas to the motion of the solids. Results: We show that in low-viscosity protoplanetary disks (with a monotonous surface density similar to that of the minimum-mass solar nebula), the flow of pebbles does not usually reach the required surface density to form planetesimals by streaming instability. We show, however, that if the pebble-to-gas-mass flux exceeds a critical value, no steady solution can be found for the solid-to-gas ratio. This is particularly important for low-viscosity disks (alpha < 10^(-3)) where we show that inside of the snow line, silicate-dust grains ejected from sublimating pebbles can accumulate, eventually leading to the formation of dust-rich planetesimals directly by gravitational instability. Conclusions: This formation of dust-rich planetesimals may occur for extended periods of time, while the snow line sweeps from several au to inside of 1 au. The rock-to-ice ratio may thus be globally significantly higher in planetesimals and planets than in the central star.
204 - Guillaume Laibe 2008
Aims: In order to understand the first stages of planet formation, when tiny grains aggregate to form planetesimals, one needs to simultaneously model grain growth, vertical settling and radial migration of dust in protoplanetary disks. In this study, we implement an analytical prescription for grain growth into a 3D two-phase hydrodynamics code to understand its effects on the dust distribution in disks. Methods: Following the analytic derivation of Stepinski & Valageas (1997), which assumes that grains stick perfectly upon collision, we implement a convenient and fast method of following grain growth in our 3D, two-phase (gas+dust) SPH code. We then follow the evolution of the size and spatial distribution of a dust population in a classical T Tauri star disk. Results: We find that the grains go through various stages of growth due to the complex interplay between gas drag, dust dynamics, and growth. Grains initially grow rapidly as they settle to the mid-plane, then experience a fast radial migration with little growth through the bulk of the disk, and finally pile-up in the inner disk where they grow more efficiently. This results in a bimodal distribution of grain sizes. Using this simple prescription of grain growth, we find that grains reach decimetric sizes in 10^5 years in the inner disk and survive the fast migration phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا