Do you want to publish a course? Click here

Lensing, reddening and extinction effects of MgII absorbers from z=0.4 to z=2

120   0   0.0 ( 0 )
 Added by M\\'enard Brice
 Publication date 2007
  fields Physics
and research's language is English
 Authors Brice Menard




Ask ChatGPT about the research

Using a sample of almost 7000 strong MgII absorbers with 0.4 < z < 2.2 detected in the SDSS DR4 dataset, we investigate the gravitational lensing and dust extinction effects they induce on background quasars. After carefully quantifying several selection biases, we isolate the reddening effects as a function of redshift and absorber rest equivalent width, W_0. We find the amount of dust to increase with cosmic time as (1+z)^(-1.1 +/- 0.4), following the evolution of cosmic star density or integrated star formation rate. We measure the reddening effects over a factor 30 in E(B-V) and we find the dust column density to be proportional to W_0^(1.9 +/- 0.2), which provides an important scaling for theoretical modeling of metal absorbers. We also measure the dust-to-metals ratio and find it similar to that of the Milky Way. In contrast to previous studies, we do not detect any gravitational magnification by MgII systems. We measure the upper limit mu<1.10 and discuss the origin of the discrepancy. Finally, we estimate the fraction of absorbers missed due to extinction effects and show that it rises from 1 to 50% in the range 1<W_0<6 Angstrom. We parametrize this effect and provide a correction for recovering the intrinsic distribution of absorber rest equivalent widths.



rate research

Read More

We present results from a survey of weak MgII absorbers in the VLT/UVES spectra of 81 QSOs obtained from the ESO archive. In this survey, we identified 112 weak MgII systems within the redshift interval 0.4 < z < 2.4 with 86% completeness down to a rest-frame equivalent width of W_r(2796) = 0.02A, covering a cumulative redshift path length of deltaZ=77.3. From this sample, we estimate that the number of weak absorbers per unit redshift dN/dz increases from 1.06 +/- 0.04 at <z>=1.9 to 1.76 +/- 0.08 at <z>=1.2 and thereafter decreases to 1.51 +/- 0.09 at <z>=0.9 and 1.06 +/- 0.10 at <z>=0.6. Thus we find evidence for an evolution in the population of weak MgII absorbers, with their number density peaking at z=1.2. We also determine the equivalent width distribution of weak systems at <z>=0.9 and <z>=1.9. At 0.4 < z < 1.4, there is evidence for a turnover from a powerlaw of the form n(W_r) propto W_r^{-1.04} at W_r(2796) < 0.1A. This turnover is more extreme at 1.4 < z < 2.4, where the equivalent width distribution is close to an extrapolation of the exponential distribution function found for strong MgII absorbers. Based on these results, we discuss the possibility that some fraction of weak MgII absorbers, particularly single cloud systems, are related to satellite clouds surrounding strong MgII systems. These structures could also be analogs to Milky Way high velocity clouds. In this context, the paucity of high redshift weak MgII absorbers is caused by a lack of isolated accreting clouds on to galaxies during that epoch.
76 - G.M. Williger 2001
The largest known structure in the high redshift universe is mapped by at least 18 quasars and spans ~5 deg x 2.5 deg on the sky, with a quasar spatial overdensity of 6-10 times above the mean. This large quasar group provides an extraordinary laboratory ~100 x 200 x 200 h^-3 comoving Mpc^3 in size (q0=0.5, Lambda=0, H0=100h km/s/Mpc) covering 1.20<z<1.39 in redshift. One approach to establish how LQGs relate to mass (galaxy) enhancements is to probe their gas content and distribution via background quasars. We have found the large quasar group to be associated with 11 MgII absorption systems at 1.2<z<1.4; 0.02%--2.05% of simulations with random MgII redshifts match or exceed this number in that redshift interval, depending on the normalization method used. The minimal spanning tree test also supports the existence of a structure of MgII absorbers coincident with the LQG, and additionally indicates a foreground structure populated by MgII absorbers and quasars at z~0.8. Finally, we find a tendency for MgII absorbers in general to correlate with field quasars (i.e. quasars both inside and outside of the LQG) at a projected scale length on the sky of 9/h Mpc and a velocity difference |Delta v|=3000 to 4500 km/s. While the correlation is on a scale consistent with observed galaxy-AGN distributions, the nonzero velocity offset could be due to the periphery effect, in which quasars tend to populate the outskirts of clusters of galaxies and metal absorption systems, or to peculiar velocity effects.
Strong foreground absorption features from singly-ionized Magnesium (Mg II) are commonly observed in the spectra of quasars and are presumed to probe a wide range of galactic environments. To date, measurements of the average dark matter halo masses of intervening Mg II absorbers by way of large-scale cross-correlations with luminous galaxies have been limited to z<0.7. In this work we cross-correlate 21 strong (W{lambda}2796>0.6 {deg}A) Mg II absorption systems detected in quasar spectra from the Sloan Digital Sky Survey Data Release 7 with ~32,000 spectroscopically confirmed galaxies at 0.7<z<1.45 from the DEEP2 galaxy redshift survey. We measure dark matter (DM) halo biases of b_G=1.44pm0.02 and b_A=1.49pm0.45 for the DEEP2 galaxies and Mg II absorbers, respectively, indicating that their clustering amplitudes are roughly consistent. Haloes with the bias we measure for the Mg II absorbers have a corresponding mass of 1.8(+4.2/-1.6) times 10^12h-1M_sun, although the actual mean absorber halo mass will depend on the precise distribution of absorbers within DM haloes. This mass estimate is consistent with observations at z=0.6, suggesting that the halo masses of typical Mg II absorbers do not significantly evolve from z~1. We additionally measure the average W{lambda}2796>0.6 AA gas covering fraction to be f =0.5 within 60 h-1kpc around the DEEP2 galaxies, and we find an absence of coincident strong Mg II absorption beyond a projected separation of ~40 h-1kpc. Although the star-forming z>1 DEEP2 galaxies are known to exhibit ubiquitous blueshifted Mg II absorption, we find no direct evidence in our small sample linking W{lambda}2796>0.6 AA absorbers to galaxies with ongoing star formation.
We have performed an analysis of over 34,000 MgII doublets at 0.36 < z < 2.29 in Sloan Digital Sky Survey (SDSS) Data-Release 7 quasar spectra; the catalog, advanced data products, and tools for analysis are publicly available. The catalog was divided into 14 small redshift bins with roughly 2500 doublets in each, and from Monte-Carlo simulations, we estimate 50% completeness at rest equivalent width W_r ~ 0.8 Angstrom. The equivalent-width frequency distribution is described well by an exponential model at all redshifts, and the distribution becomes flatter with increasing redshift, i.e., there are more strong systems relative to weak ones. Direct comparison with previous SDSS MgII surveys reveal that we recover at least 70% of the doublets in these other catalogs, in addition to detecting thousands of new systems. We discuss how these surveys come by their different results, which qualitatively agree but, due to the very small uncertainties, differ by a statistically significant amount. The estimated physical cross-section of MgII-absorbing galaxy halos increased three-fold, approximately, from z = 0.4 --> 2.3, while the W_r >= 1 Angstrom absorber line density grew, dN_MgII/dX, by roughly 45%. Finally, we explore the different evolution of various absorber populations - damped Lyman-alpha absorbers, Lyman-limit systems, strong CIV absorbers, and strong and weaker MgII systems - across cosmic time (0 < z < 6).
We report 4 new detections of 21-cm absorption from a systematic search of 21-cm absorption in a sample of 17 strong (Wr(MgII 2796)>1A) intervening MgII absorbers at 0.5<z<1.5. We also present 20-cm milliarcsecond scale maps of 40 quasars having 42 intervening strong MgII absorbers for which we have searched for 21-cm absorption. Combining 21-cm absorption measurements for 50 strong MgII systems from our surveys with the measurements from literature, we obtain a sample of 85 strong MgII absorbers at 0.5<z<1 and 1.1<z<1.5. We present detailed analysis of this sample, taking into account the effect of the varying 21-cm optical depth sensitivity and covering factor associated with the different quasar sight lines. We find that the 21-cm detection rate is higher towards the quasars with flat or inverted spectral index at cm wavelengths. About 70% of 21-cm detections are towards the quasars with linear size, LS<100 pc. The 21-cm absorption lines having velocity widths, DeltaV>100 km/s are mainly seen towards the quasars with extended radio morphology at arcsecond scales. However, we do not find any correlation between the integrated 21-cm optical depth or DeltaV with the LS measured from the milliarcsecond scale images. All this can be understood if the absorbing gas is patchy with a typical correlation length of ~30-100 pc. We show that within the measurement uncertainty, the 21-cm detection rate in strong MgII systems is constant over 0.5<z<1.5, i.e., over ~30% of the total age of universe. We show that the detection rate can be underestimated by up to a factor 2 if 21-cm optical depths are not corrected for the partial coverage estimated using milliarcsecond scale maps. Since stellar feedback processes are expected to diminish the filling factor of cold neutral medium over 0.5<z<1, this lack of evolution in the 21-cm detection rate in strong MgII absorbers is intriguing. [abridged]
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا