Do you want to publish a course? Click here

Precious Metals in SDSS Quasar Spectra II: Tracking the Evolution of Strong, 0.4 < z < 2.3 MgII Absorbers with Thousands of Systems

239   0   0.0 ( 0 )
 Added by Kathy Cooksey
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have performed an analysis of over 34,000 MgII doublets at 0.36 < z < 2.29 in Sloan Digital Sky Survey (SDSS) Data-Release 7 quasar spectra; the catalog, advanced data products, and tools for analysis are publicly available. The catalog was divided into 14 small redshift bins with roughly 2500 doublets in each, and from Monte-Carlo simulations, we estimate 50% completeness at rest equivalent width W_r ~ 0.8 Angstrom. The equivalent-width frequency distribution is described well by an exponential model at all redshifts, and the distribution becomes flatter with increasing redshift, i.e., there are more strong systems relative to weak ones. Direct comparison with previous SDSS MgII surveys reveal that we recover at least 70% of the doublets in these other catalogs, in addition to detecting thousands of new systems. We discuss how these surveys come by their different results, which qualitatively agree but, due to the very small uncertainties, differ by a statistically significant amount. The estimated physical cross-section of MgII-absorbing galaxy halos increased three-fold, approximately, from z = 0.4 --> 2.3, while the W_r >= 1 Angstrom absorber line density grew, dN_MgII/dX, by roughly 45%. Finally, we explore the different evolution of various absorber populations - damped Lyman-alpha absorbers, Lyman-limit systems, strong CIV absorbers, and strong and weaker MgII systems - across cosmic time (0 < z < 6).



rate research

Read More

100 - Kathy L. Cooksey 2012
We have vastly increased the CIV statistics at intermediate redshift by surveying the thousands of quasars in the Sloan Digital Sky Survey Data-Release 7. We visually verified over 16,000 CIV systems with 1.46 < z < 4.55---a sample size that renders Poisson error negligible. Detailed Monte Carlo simulations show we are approximately 50% complete down to rest equivalent widths W_r ~ 0.6 AA. We analyzed the sample as a whole and in ten small redshift bins with approximately 1500 doublets each. The equivalent width frequency distributions f(W_r) were well modeled by an exponential, with little evolution in shape. In contrast with previous studies that modeled the frequency distribution as a single power law, the fitted exponential gives a finite mass density for the CIV ions. The co-moving line density dN_CIV/dX evolved smoothly with redshift, increasing by a factor of 2.37+/-0.09 from z = 4.55 to 1.96, then plateauing at dN_CIV/dX ~ 0.34 for z = 1.96 to 1.46. Comparing our SDSS sample with z < 1 (ultraviolet) and z > 5 (infrared) surveys, we see an approximately 10-fold increase in dN_CIV/dX over z ~ 6 --> 0, for W_r >= 0.6 AA. This suggests a monotonic and significant increase in the enrichment of gas outside galaxies over the 12 Gyr lifetime of the universe.
We report 4 new detections of 21-cm absorption from a systematic search of 21-cm absorption in a sample of 17 strong (Wr(MgII 2796)>1A) intervening MgII absorbers at 0.5<z<1.5. We also present 20-cm milliarcsecond scale maps of 40 quasars having 42 intervening strong MgII absorbers for which we have searched for 21-cm absorption. Combining 21-cm absorption measurements for 50 strong MgII systems from our surveys with the measurements from literature, we obtain a sample of 85 strong MgII absorbers at 0.5<z<1 and 1.1<z<1.5. We present detailed analysis of this sample, taking into account the effect of the varying 21-cm optical depth sensitivity and covering factor associated with the different quasar sight lines. We find that the 21-cm detection rate is higher towards the quasars with flat or inverted spectral index at cm wavelengths. About 70% of 21-cm detections are towards the quasars with linear size, LS<100 pc. The 21-cm absorption lines having velocity widths, DeltaV>100 km/s are mainly seen towards the quasars with extended radio morphology at arcsecond scales. However, we do not find any correlation between the integrated 21-cm optical depth or DeltaV with the LS measured from the milliarcsecond scale images. All this can be understood if the absorbing gas is patchy with a typical correlation length of ~30-100 pc. We show that within the measurement uncertainty, the 21-cm detection rate in strong MgII systems is constant over 0.5<z<1.5, i.e., over ~30% of the total age of universe. We show that the detection rate can be underestimated by up to a factor 2 if 21-cm optical depths are not corrected for the partial coverage estimated using milliarcsecond scale maps. Since stellar feedback processes are expected to diminish the filling factor of cold neutral medium over 0.5<z<1, this lack of evolution in the 21-cm detection rate in strong MgII absorbers is intriguing. [abridged]
255 - Brice Menard 2005
Using a large sample of MgII absorbers with 0.4<z<2.2 detected by Nestor et al (2005) in the Early Data Release of the SDSS, we present new constraints on the physical properties of these systems based on two statistical analyses: (i) By computing the ratio between the composite spectra of quasars with and without absorbers, we measure the reddening effects induced by these intervening systems; and (ii) by stacking SDSS images centered on quasars with strong MgII absorption lines and isolating the excess light around the PSF, we measure the mean luminosity and colors of the absorbing galaxies. This statistical approach does not require any spectroscopic follow up and allows us to constrain the photometric properties of absorber systems.
We present results from a survey of weak MgII absorbers in the VLT/UVES spectra of 81 QSOs obtained from the ESO archive. In this survey, we identified 112 weak MgII systems within the redshift interval 0.4 < z < 2.4 with 86% completeness down to a rest-frame equivalent width of W_r(2796) = 0.02A, covering a cumulative redshift path length of deltaZ=77.3. From this sample, we estimate that the number of weak absorbers per unit redshift dN/dz increases from 1.06 +/- 0.04 at <z>=1.9 to 1.76 +/- 0.08 at <z>=1.2 and thereafter decreases to 1.51 +/- 0.09 at <z>=0.9 and 1.06 +/- 0.10 at <z>=0.6. Thus we find evidence for an evolution in the population of weak MgII absorbers, with their number density peaking at z=1.2. We also determine the equivalent width distribution of weak systems at <z>=0.9 and <z>=1.9. At 0.4 < z < 1.4, there is evidence for a turnover from a powerlaw of the form n(W_r) propto W_r^{-1.04} at W_r(2796) < 0.1A. This turnover is more extreme at 1.4 < z < 2.4, where the equivalent width distribution is close to an extrapolation of the exponential distribution function found for strong MgII absorbers. Based on these results, we discuss the possibility that some fraction of weak MgII absorbers, particularly single cloud systems, are related to satellite clouds surrounding strong MgII systems. These structures could also be analogs to Milky Way high velocity clouds. In this context, the paucity of high redshift weak MgII absorbers is caused by a lack of isolated accreting clouds on to galaxies during that epoch.
We present the Voigt profile (VP) models, column densities, Doppler b parameters, kinematics, and distribution of components for 422 MgII absorbers found in a survey of 249 HIRES and UVES quasar spectra. The equivalent width range of the sample is 0.006 < W_r(2796) < 6.23 angstroms (A) and the redshift range is 0.19 < z < 2.55, with a mean of <z> = 1.18. Based on historical precedent, we classified 180 absorbers as weak systems (W_r(2796) < 0.3 A) and 242 as strong systems (W_r(2796) >= 0.3 A). Assuming a minimum number of significant components per system, the VP fitting, yielded a total of 2,989 components, with an average of 2.7 and 10.3 components found for the weak and strong MgII subsamples, respectively. The VP component line density for the full sample is 8.62 +/- 0.23 clouds/A. The distribution of VP component column density over the range 12.4 < log[N(MgII)] < 17.0 [ions cm^-2] is well modeled with a power-law slope of -1.45 +/- 0.01. The median Doppler b parameters are 4.5 +/- 3.5 km/s, 6.0 +/- 4.5 km/s and 5.7 +/- 4.4 km/s for the weak, strong, and full samples. We modeled the probability of component velocity splitting (the two-point velocity correlation function, TPCF) of our full sample using a three-component composite Gaussian function. Our resulting velocity dispersions are 25.4, 68.7, and 207.1 km/s, respectively. These data provide an excellent database for studying the cosmic evolution of MgII absorber kinematic evolution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا