We discuss various models of ion transport through cell membrane channels. Recent experimental data shows that sizes of ion channels are compared to those of ions and that only few ions may be simultaneously in any single channel. Theoretical description of ion transport in such channels should therefore take into account interactions between ions and between ions and channel proteins. This is not satisfied by macroscopic continuum models based on Poisson-Nernst-Planck equations. More realistic descriptions of ion transport are offered by microscopic Brownian and molecular dynamics. One should also take into account a dynamical character of the channel structure. This is not yet addressed in the literature
The interaction between actin filaments and microtubules is crucial for many eukaryotic cellular processes, such as, among others, cell polarization, cell motility and cellular wound healing. The importance of this interaction has long been recognised, yet very little is understood about both the underlying mechanisms and the consequences for the spatial (re)organization of the cellular cytoskeleton. At the same time, understanding the causes and the consequences of the interaction between different biomolecular components are key questions for emph{in vitro} research involving reconstituted biomolecular systems, especially in the light of current interest in creating minimal synthetic cells. In this light, recent emph{in vitro} experiments have shown that the actin-microtubule interaction mediated by the cytolinker TipAct, which binds to actin lattice and microtubule tip, causes the directed transport of actin filaments. We develop an analytical theory of dynamically unstable microtubules, nucleated from the center of a spherical cell, in interaction with actin filaments. We show that, depending on the balance between the diffusion of unbound actin filaments and propensity to bind microtubules, actin is either concentrated in the center of the cell, where the density of microtubules is highest, or becomes localized to the cell cortex.
We report an experimental study of the influences of the fixed charge and bulk ionic concentrations on the conduction of biological ion channels, and we consider the results within the framework of the ionic Coulomb blockade model of permeation and selectivity. Voltage clamp recordings were used to investigate the Na$^+$/Ca$^{2+}$ anomalous mole fraction effect (AMFE) exhibited by the bacterial sodium channel NaChBac and its mutants. Site-directed mutagenesis was used to study the effect of either increasing or decreasing the fixed charge in their selectivity filters for comparison with the predictions of the Coulomb blockade model. The model was found to describe well some aspects of the experimental (divalent blockade and AMFE) and simulated (discrete multi-ion conduction and occupancy band) phenomena, including a concentration-dependent shift of the Coulomb staircase. These results substantially extend the understanding of ion channel selectivity and may also be applicable to biomimetic nanopores with charged walls.
We study the coarsening of strongly microphase separated membrane domains in the presence of recycling of material. We study the dynamics of the domain size distribution under both scale-free and size-dependent recycling. Closed form solutions to the steady state distributions and its associated central moments are obtained in both cases. Moreover, for the size-independent case, the~time evolution of the moments is analytically calculated, which provide us with exact results for their corresponding relaxation times. Since these moments and relaxation times are measurable quantities, the biophysically significant free parameters in our model may be determined by comparison with experimental data.
Endocytosis underlies many cellular functions including signaling and nutrient uptake. The endocytosed cargo gets redistributed across a dynamic network of endosomes undergoing fusion and fission. Here, a theoretical approach is reviewed which can explain how the microscopic properties of endosome interactions cause the emergent macroscopic properties of cargo trafficking in the endosomal network. Predictions by the theory have been tested experimentally and include the inference of dependencies and parameter values of the microscopic processes. This theory could also be used to infer mechanisms of signal-trafficking crosstalk. It is applicable to in vivo systems since fixed samples at few time points suffice as input data.
Genetically identical cells under the same environmental conditions can show strong variations in protein copy numbers due to inherently stochastic events in individual cells. We here develop a theoretical framework to address how variations in enzyme abundance affect the collective kinetics of metabolic reactions observed within a population of cells. Kinetic parameters measured at the cell population level are shown to be systematically deviated from those of single cells, even within populations of homogeneous parameters. Because of these considerations, Michaelis-Menten kinetics can even be inappropriate to apply at the population level. Our findings elucidate a novel origin of discrepancy between in vivo and in vitro kinetics, and offer potential utility for analysis of single-cell metabolomic data.