Do you want to publish a course? Click here

Hierarchical Star-Formation in M33: Fundamental properties of the star-forming regions

97   0   0.0 ( 0 )
 Added by Nate Bastian
 Publication date 2007
  fields Physics
and research's language is English
 Authors N. Bastian




Ask ChatGPT about the research

Star-formation within galaxies appears on multiple scales, from spiral structure, to OB associations, to individual star clusters, and often sub-structure within these clusters. This multitude of scales calls for objective methods to find and classify star-forming regions, regardless of spatial size. To this end, we present an analysis of star-forming groups in the local group spiral galaxy M33, based on a new implementation of the Minimum Spanning Tree (MST) method. Unlike previous studies which limited themselves to a single spatial scale, we study star-forming structures from the effective resolution limit (~20pc) to kpc scales. We find evidence for a continuum of star-forming group sizes, from pc to kpc scales. We do not find a characteristic scale for OB associations, unlike that found in previous studies, and we suggest that the appearance of such a scale was caused by spatial resolution and selection effects. The luminosity function of the groups is found to be well represented by a power-law with an index, -2, similar to that found for clusters and GMCs. Additionally, the groups follow a similar mass-radius relation as GMCs. The size distribution of the groups is best described by a log-normal distribution and we show that within a hierarchical distribution, if a scale is selected to find structure, the resulting size distribution will have a log-normal distribution. We find an abrupt drop of the number of groups outside a galactic radius of ~4kpc, suggesting a change in the structure of the star-forming ISM, possibly reflected in the lack of GMCs beyond this radius. (abridged)



rate research

Read More

We present a multiwavelength (ultraviolet, infrared, optical and CO) study of a set of luminous HII regions in M33: NGC 604, NGC 595, NGC 592, NGC 588 and IC131. We study the emission distribution in the interiors of the HII regions to investigate the relation between the dust emission at 8 micron and 24 micron and the location of the massive stars and gas. We find that the 24 micron emission is closely related to the location of the ionized gas, while the 8 micron emission is more related to the boundaries of the molecular clouds consistently with its expected association with photodissociation regions (PDRs). Ultraviolet emission is generally surrounded by the H-alpha emission. For NGC 604 and NGC 595, where CO data are available, we see a radial gradient of the emission distribution at the wavelengths studied here: from the center to the boundary of the HII regions we observe ultraviolet, H-alpha, 24 micron, 8 micron and CO emission distributions. We quantify the star formation for our HII regions using the integrated fluxes at the set of available wavelengths, assuming an instantaneous burst of star formation. We show that a linear combination of 24 micron and H-alpha emission better describes the star formation for these objects than the dust luminosities by themselves. For NGC 604, we obtain and compare extinction maps derived from the Balmer decrement and from the 24 micron and H-alpha emission line ratio. Although the maps show locally different values in extinction, we find similar integrated extinctions derived from the two methods. We also investigate here the possible existence of embedded star formation within NGC 604.
177 - C. Kramer , M. Boquien , J. Braine 2011
Within the key project Herschel M33 extended survey (HerM33es), we are studying the physical and chemical processes driving star formation and galactic evolution in the nearby galaxy M33, combining the study of local conditions affecting individual star formation with properties only becoming apparent on global scales. Here, we present recent results obtained by the HerM33es team. Combining Spitzer and Herschel data ranging from 3.6um to 500um, along with HI, Halpha, and GALEX UV data, we have studied the dust at high spatial resolutions of 150pc, providing estimators of the total infrared (TIR) brightness and of the star formation rate. While the temperature of the warm dust at high brightness is driven by young massive stars, evolved stellar populations appear to drive the temperature of the cold dust. Plane-parallel models of photon dominated regions (PDRs) fail to reproduce fully the [CII], [OI], and CO maps obtained in a first spectroscopic study of one 2x2 subregion of M33, located on the inner, northern spiral arm and encompassing the HII region BCLMP302.
Recent observations of the HDO/H$_2$O ratio toward protostars in isolated and clustered environments show an apparent dichotomy, where isolated sources show higher D/H ratios than clustered counterparts. Establishing which physical and chemical processes create this differentiation can provide insights into the chemical evolution of water during star formation and the chemical diversity during the star formation process and in young planetary systems. Methods: The evolution of water is modeled using 3D physicochemical models of a dynamic star-forming environment. The physical evolution during the protostellar collapse is described by tracer particles from a 3D MHD simulation of a molecular cloud region. Each particle trajectory is post-processed using RADMC-3D to calculate the temperature and radiation field. The chemical evolution is simulated using a three-phase grain-surface chemistry model and the results are compared with interferometric observations of H$_2$O, HDO, and D$_2$O in hot corinos toward low-mass protostars. Results: The physicochemical model reproduces the observed HDO/H$_2$O and D$_2$O/HDO ratios in hot corinos, but shows no correlation with cloud environment for similar identical conditions. The observed dichotomy in water D/H ratios requires variation in the initial conditions (e.g., the duration and temperature of the prestellar phase). Reproducing the observed D/H ratios in hot corinos requires a prestellar phase duration $tsim$1-3 Myr and temperatures in the range $T sim$ 10-20 K prior to collapse. This work demonstrates that the observed differentiation between clustered and isolated protostars stems from differences in the molecular cloud or prestellar core conditions and does not arise during the protostellar collapse itself.
Maser emission plays an important role as a tool in star formation studies. It is widely used for deriving kinematics, as well as the physical conditions of different structures, hidden in the dense environment very close to the young stars, for example associated with the onset of jets and outflows. We will summarize the recent observational and theoretical progress on this topic since the last maser symposium: the IAU Symposium 242 in Alice Springs.
We present mid-infrared (MIR) spectra of HII regions within star-forming galaxies M83 and M33. Their emission features are compared with Galactic and extragalactic HII regions, HII-type galaxies, starburst galaxies, and Seyfert/LINER type galaxies. Our main results are as follows: (i) the M33 and M83 HII regions lie in between Seyfert/LINER galaxies and HII-type galaxies in the 7.7/11.3 - 6.2/11.3 plane, while the different sub-samples exhibiting different 7.7/6.2 ratios; (ii) Using the NASA Ames PAH IR Spectroscopic database, we demonstrate that the 6.2/7.7 ratio does not effectively track PAH size, but the 11.3/3.3 PAH ratio does; (iii) variations on the 17 $mu$m PAH band depends on object type; however, there is no dependence on metallicity for both extragalactic HII regions and galaxies; (iv) the PAH/VSG intensity ratio decreases with the hardness of the radiation field and galactocentric radius (Rg), yet the ionization alone cannot account for the variation seen in all of our sources; (v) the relative strength of PAH features does not change significantly with increasing radiation hardness, as measured through the [NeIII]/[NeII] ratio and the ionization index; (vi) We present PAH SFR calibrations based on the tight correlation between the 6.2, 7.7, and 11.3 $mu$m PAH luminosities with the 24 $mu$m luminosity and the combination of the 24 $mu$m and H$alpha$ luminosity; (vii) Based on the total luminosity from PAH and FIR emission, we argue that extragalactic HII regions are more suitable templates in modeling and interpreting the large scale properties of galaxies compared to Galactic HII regions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا