Do you want to publish a course? Click here

Spectral study on the dips of Cir X-1

154   0   0.0 ( 0 )
 Added by YaJuan Lei
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present X-ray spectral analyses of low mass X-ray binary Cir X-1 during X-ray dips, using the Rossi X-ray Timing Explorer (RXTE) data. Each dip was divided into several segments, and the spectrum of each segment was fitted with a three-component blackbody model, in which two components are affected by partial covering and the third one is unaffected. A Gaussian emission line is also included in the spectral model to represent the Fe Ka line at ~ 6.4 keV. The fitted temperatures of the two partially covered components are about 2 keV and 1 keV, while the uncovered component has a temperature of ~ 0.5-0.6 keV. The equivalent blackbody emission radius of the hottest component is the smallest and that of the coolest component is the biggest. During dips, the fluxes of the two hot components are linearly correlated, while that of the third component doesnt show any significant variation. The Fe line flux remains constant within errors during the short dips. However, during the long dips the line flux changes significantly and is positively correlated with the fluxes of the two hot components. These results suggest: (1) the temperature of the X-ray emitting region decreases with radius, (2) the Fe Ka line emitting region is close to the hot continuum emitting region, and (3) the size of the Fe line emitting region is bigger than the size of the obscuring matters causing short dips but smaller than the sizes of those causing long dips.



rate research

Read More

164 - Paolo Soleri 2008
We analysed simultaneous X-ray/radio observations of Circinus X-1 collected respectively with RXTE and ATCA in 2000 October and 2002 December and identified radio flares close to phase 0.0 and 0.5 of the orbital period. To date, there is only circumstantial evidence for radio flares near phase 0.5. Moreover, in our data set, we clearly associated both a radio flare and X-ray spectral timing changes with phase 0.0. While for black hole X-ray binaries the picture of the association between the X-ray and the radio bands is quite well understood, for neutron star X-ray binaries a clear and complete picture is still missing.
56 - V. Tudose 2006
We present a partial analysis of a multi-wavelength study of the X-ray binary Cir X-1, a system harboring the most relativistic outflow in our galaxy so far. The data were taken (almost) simultaneously in radio and X ray during a survey carried out in October 2000 and December 2002. Cir X-1 was observed at the radio frequencies of 4.8 and 8.6 GHz with the Australia Telescope Compact Array (ATCA). In the X-ray spectral domain we used the Rossi X-Ray Timing Explorer (RXTE). We found strong evidence for flaring activity in radio not only at the periastron but also at the apoastron passages. A comparison of our data against different correlations between radio and X ray found in other neutron star systems shows that Cir X-1 does not seem to follow the general trend. However, the fact that Cir X-1 is an `exotic X-ray binary makes any interpretation more complicated.
High-mass X-ray binary systems are powered by the stellar wind of their donor stars. The X-ray state of Cygnus X-1 is correlated with the properties of the wind which defines the environment of mass accretion. Chandra-HETGS observations close to orbital phase 0 allow for an analysis of the photoionzed stellar wind at high resolution, but because of the strong variability due to soft X-ray absorption dips, simultaneous multi-satellite observations are required to track and understand the continuum, too. Besides an earlier joint Chandra and RXTE observation, we present first results from a recent campaign which represents the best broad-band spectrum of Cyg X-1 ever achieved: On 2008 April 18/19 we observed this source with XMM-Newton, Chandra, Suzaku, RXTE, INTEGRAL, Swift, and AGILE in X- and gamma-rays, as well as with VLA in the radio. After superior conjunction of the black hole, we detect soft X-ray absorption dips likely due to clumps in the focused wind covering >95 % of the X-ray source, with column densities likely to be of several 10^23 cm^-2, which also affect photon energies above 20 keV via Compton scattering.
394 - A. DA`i , C. Pinto , M. Del Santo 2021
Soft Ultra-Luminous X-ray (ULXs) sources are a subclass of the ULXs that can switch from a supersoft spectral state, where most of the luminosity is emitted below 1 keV, to a soft spectral state with significant emission above 1 keV. In a few systems, dips have been observed. The mechanism behind this state transition and the dips nature are still debated. To investigate these issues, we obtained a long XMM-Newton monitoring campaign of a member of this class, NGC 247 ULX-1. We computed the hardness-intensity diagram for the whole dataset and identified two different branches: the normal branch and the dipping branch, which we study with four and three hardness-intensity resolved spectra, respectively. All seven spectra are well described by two thermal components: a colder ($kT_{rm bb}$ $sim$ 0.1-0.2 keV) black-body, interpreted as emission from the photo-sphere of a radiatively-driven wind, and a hotter ($kT_{rm disk}$ $sim$ 0.6 keV) multicolour disk black-body, likely due to reprocessing of radiation emitted from the innermost regions. In addition, a complex pattern of emission and absorption lines has been taken into account based on previous high-resolution spectroscopic results. We studied the evolution of spectral parameters and the flux of the two thermal components along the two branches and discuss two scenarios possibly connecting the state transition and the dipping phenomenon. One is based on geometrical occultation of the emitting regions, the other invokes the onset of a propeller effect.
82 - Shin Watanabe 2006
We present results from quantitative modeling and spectral analysis of the high mass X-ray binary Vela X-1 obtained with the Chandra HETGS. The spectra exhibit emission lines from H-like and He-like ions driven by photoionization, as well as fluorescent emission lines from several elements in lower charge states. In order to interpret and make full use of the high-quality data, we have developed a simulator, which calculates the ionization and thermal structure of a stellar wind photoionized by an X-ray source, and performs Monte Carlo simulations of X-ray photons propagating through the wind. The emergent spectra are then computed as a function of the viewing angle accurately accounting for photon transport in three dimensions including dynamics. From comparisons of the observed spectra with the simulation results, we are able to find the ionization structure and the geometrical distribution of material in Vela X-1 that can reproduce the observed spectral line intensities and continuum shapes at different orbital phases remarkably well. It is found that a large fraction of X-ray emission lines from highly ionized ions are formed in the region between the neutron star and the companion star. We also find that the fluorescent X-ray lines must be produced in at least three distinct regions --(1)the extended stellar wind, (2)reflection off the stellar photosphere, and (3)in a distribution of dense material partially covering and possibly trailing the neutron star, which may be associated with an accretion wake. Finally, from detailed analysis of the emission lines, we demonstrate that the stellar wind is affected by X-ray photoionization.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا