No Arabic abstract
Soft Ultra-Luminous X-ray (ULXs) sources are a subclass of the ULXs that can switch from a supersoft spectral state, where most of the luminosity is emitted below 1 keV, to a soft spectral state with significant emission above 1 keV. In a few systems, dips have been observed. The mechanism behind this state transition and the dips nature are still debated. To investigate these issues, we obtained a long XMM-Newton monitoring campaign of a member of this class, NGC 247 ULX-1. We computed the hardness-intensity diagram for the whole dataset and identified two different branches: the normal branch and the dipping branch, which we study with four and three hardness-intensity resolved spectra, respectively. All seven spectra are well described by two thermal components: a colder ($kT_{rm bb}$ $sim$ 0.1-0.2 keV) black-body, interpreted as emission from the photo-sphere of a radiatively-driven wind, and a hotter ($kT_{rm disk}$ $sim$ 0.6 keV) multicolour disk black-body, likely due to reprocessing of radiation emitted from the innermost regions. In addition, a complex pattern of emission and absorption lines has been taken into account based on previous high-resolution spectroscopic results. We studied the evolution of spectral parameters and the flux of the two thermal components along the two branches and discuss two scenarios possibly connecting the state transition and the dipping phenomenon. One is based on geometrical occultation of the emitting regions, the other invokes the onset of a propeller effect.
We propose the thick-disc model of Gu et al. 2016 to interpret the transition between soft ultraluminous state (SUL) and supersoft ultraluminous (SSUL) state in NGC 247. As accretion rate increases, the inner disc will puff up and act as shield to block the innermost X-ray emission regions and absorb both soft and hard X-ray photons. The absorbed X-ray emission will be re-radiated as a much softer blackbody X-ray spectrum. Hence NGC 247 shows flux dips in the hard X-ray band and transits from the SUL state to the SSUL state. The $sim 200$s transition timescale can be explained by the viscous timescale. According to our model, the inner disc in the super-soft state is thicker and has smaller viscous timescale than in the soft state. X-ray flux variability, which is assumed to be driven by accretion rate fluctuations, might be viscous time-scale invariant. Therefore, in the SSUL state, NGC 247 is more variable. The bolometric luminosity is saturated in the thick disc; the observed radius-temperature relation can therefore be naturally explained.
Most ULXs are believed to be powered by super-Eddington accreting neutron stars and, perhaps, black holes. Above the Eddington rate the disc is expected to thicken and to launch powerful winds through radiation pressure. Winds have been recently discovered in several ULXs. However, it is yet unclear whether the thickening of the disc or the wind variability causes the switch between the classical soft and supersoft states observed in some ULXs. In order to understand such phenomenology and the overall super-Eddington mechanism, we undertook a large (800 ks) observing campaign with XMM-Newton to study NGC 247 ULX-1, which shifts between a supersoft and classical soft ULX state. The new observations show unambiguous evidence of a wind in the form of emission and absorption lines from highly-ionised ionic species, with the latter indicating a mildly-relativistic outflow (-0.17c) in line with the detections in other ULXs. Strong dipping activity is observed in the lightcurve and primarily during the brightest observations, which is typical among soft ULXs, and indicates a close relationship between the accretion rate and the appearance of the dips. The latter is likely due to a thickening of the disc scale-height and the wind as shown by a progressively increasing blueshift in the spectral lines.
Most ultraluminous X-ray sources (ULXs) are believed to be stellar mass black holes or neutron stars accreting beyond the Eddington limit. Determining the nature of the compact object and the accretion mode from broadband spectroscopy is currently a challenge, but the observed timing properties provide insight into the compact object and details of the geometry and accretion processes. Here we report a timing analysis for an 800 ks XMM-Newton campaign on the supersoft ultraluminous X-ray source, NGC 247 ULX-1. Deep and frequent dips occur in the X-ray light curve, with the amplitude increasing with increasing energy band. Power spectra and coherence analysis reveals the dipping preferentially occurs on $sim 5$ ks and $sim 10$ ks timescales. The dips can be caused by either the occultation of the central X-ray source by an optically thick structure, such as warping of the accretion disc, or from obscuration by a wind launched from the accretion disc, or both. This behaviour supports the idea that supersoft ULXs are viewed close to edge-on to the accretion disc.
We report on the temporal properties of the ULX pulsar M51 ULX-7 inferred from the analysis of the 2018-2020 Swift/XRT monitoring data and archival Chandra data obtained over a period of 33 days in 2012. We find an extended low flux state, which might be indicative of propeller transition, lending further support to the interpretation that the NS is rotating near equilibrium. Alternatively, this off state could be related to a variable super-orbital period. Moreover, we report the discovery of periodic dips in the X-ray light curve that are associated with the binary orbital period. The presence of the dips implies a configuration where the orbital plane of the binary is closer to an edge on orientation, and thus demonstrates that favorable geometries are not necessary in order to observe ULX pulsars.These characteristics are similar to those seen in prototypical X-ray pulsars like Her X-1 and SMC X-1 or other ULX pulsars like NGC 5907 ULX1.
It is thought that ultraluminous X-ray sources (ULXs) are mainly powered by super-Eddington accreting neutron stars or black holes as shown by recent discovery of X-ray pulsations and relativistic winds. This work presents a follow up study of the spectral evolution over two decades of the pulsing ULX NGC 1313 X-2, in order to understand the structure of the accretion disc. The primary objective is to determine the shape and nature of the dominant spectral components by investigating their variability with the changes in the source luminosity. We have performed a spectral analysis over the canonical 0.3-10 keV energy band of all the high signal-to-noise XMM-Newton observations, and we have tested a number of different spectral models, which should approximate super-Eddington accretion discs. The baseline model consists of two thermal blackbody components with different temperatures plus an exponential cutoff powerlaw. In particular, the hotter and brighter thermal component describes the emission from the super-Eddington inner disc and the cutoff powerlaw the contribution from the accretion column of the neutron star. Instead, the cooler component describes the emission from the outer region of the disc close to the spherisation radius and the wind. The luminosity-temperature relation for the cool component follows a negative trend, which is not consistent with L$propto$T$^4$, as expected from a sub-Eddington thin disc of Shakura-Sunayev, nor with L$propto$T$^2$, as expected for advection-dominated disc, but would rather agree with a wind-dominated X-ray emitting region. Instead, the (L,T) relation for the hotter component is somewhere in between the first two theoretical scenarios. Our findings agree with the super-Eddington scenario and provide further detail on the disc structure. The source spectral evolution is qualitatively similar to that seen in NGC1313 X-1 and HolmbergIX X-1.