Do you want to publish a course? Click here

Device-spectroscopy of magnetic field effects in a polyfluorene organic light-emitting diode

255   0   0.0 ( 0 )
 Added by Markus Wohlgenannt
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform charge-induced absorption and electroluminescence spectroscopy in a polyfluorene organic magnetoresistive device. Our experiments allow us to measure the singlet exciton, triplet exciton and polaron densities in a live device under an applied magnetic field, and to distinguish between three different models that were proposed to explain organic magnetoresistance. These models are based on different spin-dependent interactions, namely exciton formation, triplet exciton-polaron quenching and bipolaron formation. We show that the singlet exciton, triplet exciton and polaron densities and conductivity all increase with increasing magnetic field. Our data are inconsistent with the exciton formation and triplet-exciton polaron quenching models.



rate research

Read More

We demonstrate Cooper-pairs drastic enhancement effect on band-to-band radiative recombination in a semiconductor. Electron Cooper pairs injected from a superconducting electrode into an active layer by the proximity effect recombine with holes injected from a p-type electrode and dramatically accelerate the photon generation rates of a light emitting diode in the optical-fiber communication band. Cooper pairs are the condensation of electrons at a spin-singlet quantum state and this condensation leads to the observed enhancement of the electric-dipole transitions. Our results indicate the possibility to open up new interdisciplinary fields between superconductivity and optoelectronics.
We report optical brain imaging using a semi-transparent organic light-emitting diode (OLED) based on the orange light-emitting polymer (LEP) Livilux PDO-124. The OLED serves as a compact, extended light source which is capable of uniformly illuminating the cortical surface when placed across a burr hole in the skull. Since all layers of the OLED are substantially transparent to photons with energies below the optical gap of the LEP, light emitted or reflected by the cortical surface may be efficiently transmitted through the OLED and into the objective lens of a low magnification microscope (macroscope). The OLED may be placed close to the cortical surface, providing efficient coupling of incident light into the brain cavity; furthermore, the macroscope may be placed close to the upper surface of the OLED, enabling efficient collection of reflected/emitted light from the cortical surface. Hence the use of a semi-transparent OLED simplifies the optical setup, while at the same time maintaining high sensitivity. The OLED is applied here to one of the most demanding forms of optical brain imaging, namely extrinsic optical imaging involving a voltage sensitive dye (VSD). Specifically, we carry out functional imaging of the primary visual cortex (V1) of a rat, using the voltage sensitive dye RH-1691 as a reporter. Imaging through the OLED light-source, we are able to resolve small (~ 0.1 %) changes in the fluorescence intensity of the dye due to changes in the neuronal membrane potential following a visual stimulus. Results are obtained on a single trial basis -- i.e. without averaging over multiple measurements -- with a time-resolution of ten milliseconds.
We investigate a semiconductor $p$-$n$ junction in contact with superconducting leads that is operated under forward bias as a light-emitting diode. The presence of superconductivity results in a significant increase of the electroluminescence in a certain frequency window. We demonstrate that the tunneling of Cooper pairs induces an additional luminescence peak on resonance. There is a transfer of superconducting to photonic coherence which results in the emission of entangled photon pairs and squeezing of the fluctuations in the quadrature amplitudes of the emitted light. The squeezing angle can be electrically manipulated by changing the relative phase of the order parameters in the superconductors. We finally derive the conditions for lasing in the system and show that the laser threshold is reduced due to superconductivity. This shows how macroscopic coherence of a superconductor can be used to control the properties of light.
62 - Marco Cecchini 2002
Planar light-emitting diodes (LEDs) fabricated within a single high-mobility quantum well are demonstrated. Our approach leads to a dramatic reduction of radiative lifetime and junction area with respect to conventional vertical LEDs, promising very high-frequency device operation. Devices were fabricated by UV lithography and wet chemical etching starting from p-type modulation-doped AlGaAs/GaAs heterostructures grown by molecular beam epitaxy. Electrical and optical measurements from room temperature down to 1.8 K show high spectral purity and high external efficiency. Time-resolved measurements yielded extremely short recombination times of the order of 50 ps, demonstrating the relevance of the present scheme for high-frequency device applications in the GHz range.
Entangled light emitting diodes based on semiconductor quantum dots are promising devices for security sensitive quantum network applications, thanks to their natural lack of multi photon-pair generation. Apart from telecom wavelength emission, network integrability of these sources ideally requires electrical operation for deployment in compact systems in the field. For multiplexing of entangled photons with classical data traffic, emission in the telecom O-band and tuneability to the nearest wavelength channel in compliance with coarse wavelength division multiplexing standards (20 nm channel spacing) is highly desirable. Here we show the first fully electrically operated telecom entangled light emitting diode with wavelength tuneability of more than 25nm, deployed in an installed fiber network. With the source tuned to 1310.00 nm, we demonstrate multiplexing of true single entangled photons with classical data traffic and achieve entanglement fidelities above 95% on an installed fiber in a city.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا