Do you want to publish a course? Click here

Momentum Dependent Charge Excitations of Two-Leg Ladder: Resonant Inelastic X-ray Scattering of (La,Sr,Ca)14Cu24O41

129   0   0.0 ( 0 )
 Added by Kenji Ishii
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Momentum dependent charge excitations of a two-leg ladder are investigated by resonant inelastic x-ray scattering of (La,Sr,Ca)14Cu24O41. In contrast to the case of a square lattice, momentum dependence of the Mott gap excitation of the ladder exhibits little change upon hole-doping, indicating the formation of hole pairs. Theoretical calculation based on a Hubbard model qualitatively explains this feature. In addition, experimental data shows intraband excitation as continuum intensity below the Mott gap and it appears at all the momentum transfers simultaneously. The intensity of the intraband excitation is proportional to the hole concentration of the ladder, which is consistent with optical conductivity measurements.



rate research

Read More

We report a resonant inelastic x-ray scattering study of the dispersion relations of charge transfer excitations in insulating La$_2$CuO$_4$. These data reveal two peaks, both of which show two-dimensional characteristics. The lowest energy excitation has a gap energy of $sim 2.2$ eV at the zone center, and a dispersion of $sim 1$ eV. The spectral weight of this mode becomes dramatically smaller around ($pi$, $pi$). The second peak shows a smaller dispersion ($sim 0.5$ eV) with a zone-center energy of $sim 3.9$ eV. We argue that these are both highly dispersive exciton modes damped by the presence of the electron-hole continuum.
Phonon-assisted 2-magnon absorption is studied at T=4 K in the spin-1/2 two-leg ladders of Ca_14-x La_x Cu_24 O_41 (x=5 and 4) for polarization of the electrical field parallel to the legs and the rungs, respectively. Two peaks at about 2140 and 2800 1/cm reflect van-Hove singularities in the density of states of the strongly dispersing 2-magnon singlet bound state, and a broad peak at about 4000 1/cm is identified with the 2-magnon continuum. Two different theoretical approaches (Jordan-Wigner fermions and perturbation theory) describe the data very well for J_parallel = 1050 - 1100 1/cm and J_parallel / J_perp = 1 - 1.1. A striking similarity of the high-energy continuum absorption of the ladders and of the undoped high T_c cuprates is observed.
447 - K. Ishii , M. Hoesch , T. Inami 2007
We report a Cu K-edge resonant inelastic x-ray scattering (RIXS) study of high-Tc cuprates. Momentum-resolved charge excitations in the CuO2 plane are examined from parent Mott insulators to carrier-doped superconductors. The Mott gap excitation in undoped insulators is found to commonly show a larger dispersion along the [pi,pi] direction than the [pi,0] direction. On the other hand, the resonance condition displays material dependence. Upon hole doping, the dispersion of the Mott gap excitation becomes weaker and an intraband excitation appears as a continuum intensity below the gap at the same time. In the case of electron doping, the Mott gap excitation is prominent at the zone center and a dispersive intraband excitation is observed at finite momentum transfer.
We performed a resonant inelastic X-ray scattering (RIXS) study of La$_{2-x}$Sr$_{x}$NiO$_{4+{delta}}$ (LSNO) at the oxygen $K$ edge to investigate the nature of the doped holes with regard to charge excitations. Charge excitations of the hole-doped nickelates are found to be almost independent of momentum transfer, indicating that the doped holes are strongly localized in character. Additionally, conspicuous changes in energy position are in temperature dependence. These characters are observed in stark contrast to those of the high-$T_{c}$ cuprate La$_{2-x}$Sr$_{x}$CuO$_{4}$ (LSCO), where delocalized doped holes form charge excitations with sizable momentum dependence in the CuO$_2$ plane. This distinct nature of charge excitations of doped holes is consistent with the metallicity of the materials and could be caused by strong electron-phonon coupling and weak quantum spin fluctuation in the nickelates.
463 - C.-C. Chen , B. Moritz , F. Vernay 2010
Results of model calculations using exact diagonalization reveal the orbital character of states associated with different Raman loss peaks in Cu $K$-edge resonant inelastic X-ray scattering (RIXS) from La$_{2}$CuO$_{4}$. The model includes electronic orbitals necessary to highlight non-local Zhang-Rice singlet, charge transfer and $d$-$d$ excitations, as well as states with apical oxygen 2$p_z$ character. The dispersion of these excitations is discussed with prospects for resonant final state wave-function mapping. A good agreement with experiments emphasizes the substantial multi-orbital character of RIXS profiles in the energy transfer range 1-6 eV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا