Do you want to publish a course? Click here

Production of hypernuclei in multifragmentation of nuclear spectator matter

251   0   0.0 ( 0 )
 Added by A Botvina
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

In peripheral collisions of relativistic heavy ions highly excited spectators containing Lambda-hyperons can be produced. Such strange spectator matter may undergo a break-up into many fragments (multifragmentation) as it is well established for ordinary nuclear systems. We generalize the statistical multifragmentation model, previously successfully used for the description of experimental data, for the case of hypernuclear systems. We predict relative yields of hypernuclei and the main characteristics of such a break-up. We point at a connection of this phenomenon with a liquid-gas phase transition in hypermatter.



rate research

Read More

Pioneering experiments on production of hypernuclei can be performed with nuclotron beams on fixed targets, and at the future NICA facility. The peripheral collisions of relativistic ions are very promising for searching mutli-strange and exotic hypernuclei which are not easy accessible with other experimental methods. In these experiments one can also get information on the Equation of State of hyper-matter around nuclear saturation density at low and moderate temperatures.
Multifragmentation reactions are dominating processes for the decomposition of highly excited nuclei leading to the fragment production in heavy-ion collisions. At high energy reactions strange particles are abundantly produced. We present a novel development of the Statistical multifragmentation model (SMM) as its generalization for the hyper-matter which is formed after the hyperon capture. In this way, it is possible to describe its disintegration into normal and hyper-nuclei. Some properties of hyper-nuclei and their binding energies can be determined from the comparison of the isotope yields. The main focus of this method is to investigate strange and multi-strange hypernuclei since their properties are not easy to measure in traditional hyper-nuclei experiments.
105 - A.S. Botvina 2006
During the collapse of massive stars, and the supernova type-II explosions, stellar matter reaches densities and temperatures which are similar to the ones obtained in intermediate-energy nucleus-nucleus collisions. The nuclear multifragmentation reactions can be used for determination of properties of nuclear matter at subnuclear densities, in the region of the nuclear liquid-gas phase transition. It is demonstrated that the modified properties of hot nuclei (in particular, their symmetry energy) extracted from the multifragmentation data can essentially influence nuclear composition of stellar matter. The effects on weak processes, and on the nucleosynthesis are also discussed.
100 - R. Ogul (GSI , Darmstadt , Germany 2002
The fragment production in multifragmentation of finite nuclei is affected by the critical temperature of nuclear matter. We show that this temperature can be determined on the basis of the statistical multifragmentation model (SMM) by analyzing the evolution of fragment distributions with the excitation energy. This method can reveal a decrease of the critical temperature that, e.g., is expected for neutron-rich matter. The influence of isospin on fragment distributions is also discussed.
97 - A.S. Botvina 2006
Within the statistical multifragmentation model we study modifications of the surface and symmetry energy of primary fragments in the freeze-out volume. The ALADIN experimental data on multifragmentation obtained in reactions induced by high-energy projectiles with different neutron richness are analyzed. We have extracted the isospin dependence of the surface energy coefficient at different degrees of fragmentation. We conclude that the surface energy of hot fragments produced in multifragmentation reactions differs from the values extracted for isolated nuclei at low excitation. At high fragment multiplicity, it becomes nearly independent of the neutron content of the fragments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا