Do you want to publish a course? Click here

Peeling and Sliding in Nucleosome Repositioning

100   0   0.0 ( 0 )
 Added by Tom Chou
 Publication date 2007
  fields Biology
and research's language is English
 Authors Tom Chou




Ask ChatGPT about the research

We investigate the mechanisms of histone sliding and detachment with a stochastic model that couples thermally-induced, passive histone sliding with active motor-driven histone unwrapping. Analysis of a passive loop or twist defect-mediated histone sliding mechanism shows that diffusional sliding is enhanced as larger portions of the DNA is peeled off the histone. The mean times to histone detachment and the mean distance traveled by the motor complex prior to histone detachment are computed as functions of the intrinsic speed of the motor. Fast motors preferentially induce detachment over sliding. However, for a fixed motor speed, increasing the histone-DNA affinity (and thereby decreasing the passive sliding rate) increases the mean distance traveled by the motor.



rate research

Read More

The interaction between actin filaments and microtubules is crucial for many eukaryotic cellular processes, such as, among others, cell polarization, cell motility and cellular wound healing. The importance of this interaction has long been recognised, yet very little is understood about both the underlying mechanisms and the consequences for the spatial (re)organization of the cellular cytoskeleton. At the same time, understanding the causes and the consequences of the interaction between different biomolecular components are key questions for emph{in vitro} research involving reconstituted biomolecular systems, especially in the light of current interest in creating minimal synthetic cells. In this light, recent emph{in vitro} experiments have shown that the actin-microtubule interaction mediated by the cytolinker TipAct, which binds to actin lattice and microtubule tip, causes the directed transport of actin filaments. We develop an analytical theory of dynamically unstable microtubules, nucleated from the center of a spherical cell, in interaction with actin filaments. We show that, depending on the balance between the diffusion of unbound actin filaments and propensity to bind microtubules, actin is either concentrated in the center of the cell, where the density of microtubules is highest, or becomes localized to the cell cortex.
238 - Sarah A. Nowak , Tom Chou 2008
Enveloped viruses enter host cells either through endocytosis, or by direct fusion of the viral membrane envelope and the membrane of the host cell. However, some viruses, such as HIV-1, HSV-1, and Epstein-Barr can enter a cell through either mechanism, with the choice of pathway often a function of the ambient physical chemical conditions, such as temperature and pH. We develop a stochastic model that describes the entry process at the level of binding of viral glycoprotein spikes to cell membrane receptors and coreceptors. In our model, receptors attach the cell membrane to the viral membrane, while subsequent binding of coreceptors enables fusion. The model quantifies the competition between fusion and endocytotic entry pathways. Relative probabilities for each pathway are computed numerically, as well as analytically in the high viral spike density limit. We delineate parameter regimes in which fusion or endocytosis is dominant. These parameters are related to measurable and potentially controllable quantities such as membrane bending rigidity and receptor, coreceptor, and viral spike densities. Experimental implications of our mechanistic hypotheses are proposed and discussed.
We introduce and parameterize a chemomechanical model of microtubule dynamics on the dimer level, which is based on the allosteric tubulin model and includes attachment, detachment and hydrolysis of tubulin dimers as well as stretching of lateral bonds, bending at longitudinal junctions, and the possibility of lateral bond rupture and formation. The model is computationally efficient such that we reach sufficiently long simulation times to observe repeated catastrophe and rescue events at realistic tubulin concentrations and hydrolysis rates, which allows us to deduce catastrophe and rescue rates. The chemomechanical model also allows us to gain insight into microscopic features of the GTP-tubulin cap structure and microscopic structural features triggering microtubule catastrophes and rescues. Dilution simulations show qualitative agreement with experiments. We also explore the consequences of a possible feedback of mechanical forces onto the hydrolysis process and the GTP-tubulin cap structure.
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected near 5 million people and led to over 0.3 million deaths. Currently, there is no specific anti-SARS-CoV-2 medication. New drug discovery typically takes more than ten years. Drug repositioning becomes one of the most feasible approaches for combating COVID-19. This work curates the largest available experimental dataset for SARS-CoV-2 or SARS-CoV main protease inhibitors. Based on this dataset, we develop validated machine learning models with relatively low root mean square error to screen 1553 FDA-approved drugs as well as other 7012 investigational or off-market drugs in DrugBank. We found that many existing drugs might be potentially potent to SARS-CoV-2. The druggability of many potent SARS-CoV-2 main protease inhibitors is analyzed. This work offers a foundation for further experimental studies of COVID-19 drug repositioning.
Biochemistry and mechanics are closely coupled in cell adhesion. At sites of cell-matrix adhesion, mechanical force triggers signaling through the Rho-pathway, which leads to structural reinforcement and increased contractility in the actin cytoskeleton. The resulting force acts back to the sites of adhesion, resulting in a positive feedback loop for mature adhesion. Here we model this biochemical-mechanical feedback loop for the special case when the actin cytoskeleton is organized in stress fibers, which are contractile bundles of actin filaments. Activation of myosin II molecular motors through the Rho-pathway is described by a system of reaction-diffusion equations, which are coupled into a viscoelastic model for a contractile actin bundle. We find strong spatial gradients in the activation of contractility and in the corresponding deformation pattern of the stress fiber, in good agreement with experimental findings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا