Do you want to publish a course? Click here

Repositioning of 8565 existing drugs for COVID-19

92   0   0.0 ( 0 )
 Added by Guo-Wei Wei
 Publication date 2020
  fields Biology
and research's language is English




Ask ChatGPT about the research

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected near 5 million people and led to over 0.3 million deaths. Currently, there is no specific anti-SARS-CoV-2 medication. New drug discovery typically takes more than ten years. Drug repositioning becomes one of the most feasible approaches for combating COVID-19. This work curates the largest available experimental dataset for SARS-CoV-2 or SARS-CoV main protease inhibitors. Based on this dataset, we develop validated machine learning models with relatively low root mean square error to screen 1553 FDA-approved drugs as well as other 7012 investigational or off-market drugs in DrugBank. We found that many existing drugs might be potentially potent to SARS-CoV-2. The druggability of many potent SARS-CoV-2 main protease inhibitors is analyzed. This work offers a foundation for further experimental studies of COVID-19 drug repositioning.



rate research

Read More

299 - J. C. Phillips 2021
The titled subject has attracted much interest. Here we summarize the substantial results obtained by a physical model of protein evolution based on hydropathic domain dynamics. In a recent Letter eighteen biologists suggested that the titled subject should be studied in a way inclusive of broad expertise (1). There is an even broader view that has been developed over several decades by physicists (2,3). This view is based on analyzing amino acid sequences of proteins. These sequences are now available on-line at Uniprot, and represent a treasure-trove of data (4).
This technical report describes a dynamic causal model of the spread of coronavirus through a population. The model is based upon ensemble or population dynamics that generate outcomes, like new cases and deaths over time. The purpose of this model is to quantify the uncertainty that attends predictions of relevant outcomes. By assuming suitable conditional dependencies, one can model the effects of interventions (e.g., social distancing) and differences among populations (e.g., herd immunity) to predict what might happen in different circumstances. Technically, this model leverages state-of-the-art variational (Bayesian) model inversion and comparison procedures, originally developed to characterise the responses of neuronal ensembles to perturbations. Here, this modelling is applied to epidemiological populations to illustrate the kind of inferences that are supported and how the model per se can be optimised given timeseries data. Although the purpose of this paper is to describe a modelling protocol, the results illustrate some interesting perspectives on the current pandemic; for example, the nonlinear effects of herd immunity that speak to a self-organised mitigation process.
127 - Bing He , Lana Garmire 2020
Coronavirus disease (COVID-19) is an infectious disease discovered in 2019 and currently in outbreak across the world. Lung injury with severe respiratory failure is the leading cause of death in COVID-19, brought by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, there still lacks efficient treatment for COVID-19 induced lung injury and acute respiratory failure. Inhibition of Angiotensin-converting enzyme 2 (ACE2) caused by spike protein of SARS-CoV-2 is the most plausible mechanism of lung injury in COVID-19. We propose two candidate drugs, COL-3 (a chemically modified tetracycline) and CGP-60474 (a cyclin-dependent kinase inhibitor), for treating lung injuries in COVID-19, based on their abilities to reverse the gene expression patterns in HCC515 cells treated with ACE2 inhibitor and in human COVID-19 patient lung tissues. Further bioinformatics analysis shows that twelve significantly enriched pathways (P-value <0.05) overlap between HCC515 cells treated with ACE2 inhibitor and human COVID-19 patient lung tissues, including signaling pathways known to be associated with lung injury such as TNF signaling, MAPK signaling and Chemokine signaling pathways. All these twelve pathways are targeted in COL-3 treated HCC515 cells, in which genes such as RHOA, RAC2, FAS, CDC42 have reduced expression. CGP-60474 shares eleven of twelve pathways with COL-3 with common target genes such as RHOA. It also uniquely targets genes related to lung injury, such as CALR and MMP14. In summary, this study shows that ACE2 inhibition is likely part of the mechanisms leading to lung injury in COVID-19, and that compounds such as COL-3 and CGP-60474 have the potential as repurposed drugs for its treatment.
We consider the recent surge of information on the potential benefits of acid-suppression drugs in the context of COVID-19, with an eye on the variability (and confusion) across the reported findings--at least as regards the popular antacid famotidine. The inconsistencies reflect contradictory conclusions from independent clinical-based studies that took roughly similar approaches, in terms of experimental design (retrospective, cohort-based, etc.) and statistical analyses (propensity-score matching and stratification, etc.). The confusion has significant ramifications in choosing therapeutic interventions: e.g., do potential benefits of famotidine indicate its use in a particular COVID-19 case? Beyond this pressing therapeutic issue, conflicting information on famotidine must be resolved before its integration in ontological and knowledge graph-based frameworks, which in turn are useful in drug repurposing efforts. To begin systematically structuring the rapidly accumulating information, in the hopes of clarifying and reconciling the discrepancies, we consider the contradictory information along three proposed axes: (1) a context-of-disease axis, (2) a degree-of-[therapeutic]-benefit axis, and (3) a mechanism-of-action axis. We suspect that incongruencies in how these axes have been (implicitly) treated in past studies has led to the contradictory indications for famotidine and COVID-19. We also trace the evolution of information on acid-suppression agents as regards the transmission, severity, and mortality of COVID-19, given the many literature reports that have accumulated. By grouping the studies conceptually and thematically, we identify three eras in the progression of our understanding of famotidine and COVID-19. Harmonizing these findings is a key goal for both clinical standards-of-care (COVID and beyond) as well as ontological and knowledge graph-based approaches.
We recently described a dynamic causal model of a COVID-19 outbreak within a single region. Here, we combine several of these (epidemic) models to create a (pandemic) model of viral spread among regions. Our focus is on a second wave of new cases that may result from loss of immunity--and the exchange of people between regions--and how mortality rates can be ameliorated under different strategic responses. In particular, we consider hard or soft social distancing strategies predicated on national (Federal) or regional (State) estimates of the prevalence of infection in the population. The modelling is demonstrated using timeseries of new cases and deaths from the United States to estimate the parameters of a factorial (compartmental) epidemiological model of each State and, crucially, coupling between States. Using Bayesian model reduction, we identify the effective connectivity between States that best explains the initial phases of the outbreak in the United States. Using the ensuing posterior parameter estimates, we then evaluate the likely outcomes of different policies in terms of mortality, working days lost due to lockdown and demands upon critical care. The provisional results of this modelling suggest that social distancing and loss of immunity are the two key factors that underwrite a return to endemic equilibrium.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا