No Arabic abstract
By performing two parallel numerical experiments -- solving the dynamical Hamiltonian equations and solving the Hasselmann kinetic equation -- we examined the applicability of the theory of weak turbulence to the description of the time evolution of an ensemble of free surface waves (a swell) on deep water. We observed qualitative coincidence of the results. To achieve quantitative coincidence, we augmented the kinetic equation by an empirical dissipation term modelling the strongly nonlinear process of white-capping. Fitting the two experiments, we determined the dissipation function due to wave breaking and found that it depends very sharply on the parameter of nonlinearity (the surface steepness). The onset of white-capping can be compared to a second-order phase transition. This result corroborates with experimental observations by Banner, Babanin, Young.
Jets coexist with planetary scale waves in the turbulence of planetary atmospheres. The coherent component of these structures arises from cooperative interaction between the coherent structures and the incoherent small-scale turbulence in which they are embedded. It follows that theoretical understanding of the dynamics of jets and planetary scale waves requires adopting the perspective of statistical state dynamics (SSD) which comprises the dynamics of the interaction between coherent and incoherent components in the turbulent state. In this work the S3T implementation of SSD for barotropic beta-plane turbulence is used to develop a theory for the jet/wave coexistence regime by separating the coherent motions consisting of the zonal jets together with a selection of large-scale waves from the smaller scale motions which constitute the incoherent component. It is found that mean flow/turbulence interaction gives rise to jets that coexist with large-scale coherent waves in a synergistic manner. Large-scale waves that would only exist as damped modes in the laminar jet are found to be transformed into exponentially growing waves by interaction with the incoherent small scale turbulence which results in a change in the mode structure allowing the mode to tap the energy of the mean jet. This mechanism of destabilization differs fundamentally and serves to augment the more familiar S3T instabilities in which jets and waves arise from homogeneous turbulence with energy source exclusively from the incoherent eddy field and provides further insight into the cooperative dynamics of the jet/waves coexistence regime in planetary turbulence.
Zonal jets in a barotropic setup emerge out of homogeneous turbulence through a flow-forming instability of the homogeneous turbulent state (`zonostrophic instability) which occurs as the turbulence intensity increases. This has been demonstrated using the statistical state dynamics (SSD) framework with a closure at second order. Furthermore, it was shown that for small supercriticality the flow-forming instability follows Ginzburg-Landau (G-L) dynamics. Here, the SSD framework is used to study the equilibration of this flow-forming instability for small supercriticality. First, we compare the predictions of the weakly nonlinear G-L dynamics to the fully nonlinear SSD dynamics closed at second order for a wide ranges of parameters. A new branch of jet equilibria is revealed that is not contiguously connected with the G-L branch. This new branch at weak supercriticalities involves jets with larger amplitude compared to the ones of the G-L branch. Furthermore, this new branch continues even for subcritical values with respect to the linear flow-forming instability. Thus, a new nonlinear flow-forming instability out of homogeneous turbulence is revealed. Second, we investigate how both the linear flow-forming instability and the novel nonlinear flow-forming instability are equilibrated. We identify the physical processes underlying the jet equilibration as well as the types of eddies that contribute in each process. Third, we propose a modification of the diffusion coefficient of the G-L dynamics that is able to capture the asymmetric evolution for weak jets at scales other than the marginal scale (side-band instabilities) for the linear flow-forming instability.
Ocean swell plays an important role in the transport of energy across the ocean, yet its evolution is still not well understood. In the late 1960s, the nonlinear Schr{o}dinger (NLS) equation was derived as a model for the propagation of ocean swell over large distances. More recently, a number of dissipative generalizations of the NLS equation based on a simple dissipation assumption have been proposed. These models have been shown to accurately model wave evolution in the laboratory setting, but their validity in modeling ocean swell has not previously been examined. We study the efficacy of the NLS equation and four of its generalizations in modeling the evolution of swell in the ocean. The dissipative generalizations perform significantly better than conservative models and are overall reasonable models for swell amplitudes, indicating dissipation is an important physical effect in ocean swell evolution. The nonlinear models did not out-perform their linearizations, indicating linear models may be sufficient in modeling ocean swell evolution.
The purpose of this article is numerical verification of the thory of weak turbulence. We performed numerical simulation of an ensemble of nonlinearly interacting free gravity waves (swell) by two different methods: solution of primordial dynamical equations describing potential flow of the ideal fluid with a free surface and, solution of the kinetic Hasselmann equation, describing the wave ensemble in the framework of the theory of weak turbulence. Comparison of the results demonstrates pretty good applicability of the weak turbulent approach.
We present the recent development of hybridizable and embedded discontinuous Galerkin (DG) methods for wave propagation problems in fluids, solids, and electromagnetism. In each of these areas, we describe the methods, discuss their main features, display numerical results to illustrate their performance, and conclude with bibliography notes. The main ingredients in devising these DG methods are (i) a local Galerkin projection of the underlying partial differential equations at the element level onto spaces of polynomials of degree k to parametrize the numerical solution in terms of the numerical trace; (ii) a judicious choice of the numerical flux to provide stability and consistency; and (iii) a global jump condition that enforces the continuity of the numerical flux to obtain a global system in terms of the numerical trace. These DG methods are termed hybridized DG methods, because they are amenable to hybridization (static condensation) and hence to more efficient implementations. They share many common advantages of DG methods and possess some unique features that make them well-suited to wave propagation problems.