Do you want to publish a course? Click here

Coalescence of particles by differential sedimentation

320   0   0.0 ( 0 )
 Added by Thorwald Stein
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider a three dimensional system consisting of a large number of small spherical particles, distributed in a range of sizes and heights (with uniform distribution in the horizontal direction). Particles move vertically at a size-dependent terminal velocity. They are either allowed to merge whenever they cross or there is a size ratio criterion enforced to account for collision efficiency. Such a system may be described, in mean field approximation, by the Smoluchowski kinetic equation with a differential sedimentation kernel, used to study e.g. rain initiation and particle distributions in the atmosphere. We solve the kinetic equation analytically to obtain steady state and self-similar solutions in time and in height, using methods borrowed from weak turbulence theory. Analytical results are compared with direct numerical simulations (DNS) of moving and merging particles, and a good agreement is found.



rate research

Read More

We simulate by lattice Boltzmann the nonequilibrium steady states of run-and-tumble particles (inspired by a minimal model of bacteria), interacting by far-field hydrodynamics, subject to confinement. Under gravity, hydrodynamic interactions barely perturb the steady state found without them, but for particles in a harmonic trap such a state is quite changed if the run length is larger than the confinement length: a self-assembled pump is formed. Particles likewise confined in a narrow channel show a generic upstream flux in Poiseuille flow: chiral swimming is not required.
We report on the use of magnetic sedimentation as a means to determine the size distribution of dispersed magnetic particles. The particles investigated here are i) single anionic and cationic nanoparticles of diameter D = 7 nm and ii) nanoparticle clusters resulting from electrostatic complexation with polyelectrolytes and polyelectrolyte-neutral copolymers. A theoretical expression of the sedimentation concentration profiles at the steady state is proposed and it is found to describe accurately the experimental data. When compared to dynamic light scattering, vibrating sample magnetometry and cryogenic transmission electron microscopy, magnetic sedimentation exhibits a unique property : it provides the core size and core size distribution of nanoparticle aggregates.
The motion of self-propelled particles can be rectified by asymmetric or ratchet-like periodic patterns in space. Here we show that a non-zero average drift can already be induced in a periodic potential with symmetric barriers when the self-propulsion velocity is also symmetric and periodically modulated but phase-shifted against the potential. In the adiabatic limit of slow rotational diffusion we determine the mean drift analytically and discuss the influence of temperature. In the presence of asymmetric barriers modulating the self-propulsion can largely enhance the mean drift or even reverse it.
We study fluctuations of particle absorption by a three-dimensional domain with multiple absorbing patches. The domain is in contact with a gas of interacting diffusing particles. This problem is motivated by living cell sensing via multiple receptors distributed over the cell surface. Employing the macroscopic fluctuation theory, we calculate the covariance matrix of the particle absorption by different patches, extending previous works which addressed fluctuations of a single current. We find a condition when the sign of correlations between different patches is fully determined by the transport coefficients of the gas and is independent of the problems geometry. We show that the fluctuating particle flux field typically develops vorticity. We establish a simple connection between the statistics of particle absorption by all the patches combined and the statistics of current in a non-equilibrium steady state in one dimension. We also discuss connections between the absorption statistics and (i) statistics of electric currents in multi-terminal diffusive conductors and (ii) statistics of wave transmission through disordered media with multiple absorbers.
We investigate the sedimentation of initially packed paramagnetic particles in presence of a homogeneous external magnetic field, in a Hele-Shaw cell filled with water. Although the magnetic susceptibility of the particles is small and the particle-particle induced magnetic interactions are significantly smaller compared to the gravitational acceleration, we do observe a measurable reduction of the decompaction rate as the amplitude of the applied magnetic field is increased. While induced magnetic dipole-dipole interactions between particles can be either attracting or repulsive depending on the particles relative alignment, our observations reveal an effective overall enhancement of the cohesion of the initial pack of particles due to the induced interactions, very likely promoting internal chain forces in the initial pack of particles. The influence of the magnetic field on the particles once they disperse after being decompacted is on the other hand found to remain marginal.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا