Do you want to publish a course? Click here

Rectification of self-propelled particles by symmetric barriers

199   0   0.0 ( 0 )
 Added by Andrey Pototsky
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The motion of self-propelled particles can be rectified by asymmetric or ratchet-like periodic patterns in space. Here we show that a non-zero average drift can already be induced in a periodic potential with symmetric barriers when the self-propulsion velocity is also symmetric and periodically modulated but phase-shifted against the potential. In the adiabatic limit of slow rotational diffusion we determine the mean drift analytically and discuss the influence of temperature. In the presence of asymmetric barriers modulating the self-propulsion can largely enhance the mean drift or even reverse it.



rate research

Read More

We present theory and experiments demonstrating the existence of invariant manifolds that impede the motion of microswimmers in two-dimensional fluid flows. One-way barriers are apparent in a hyperbolic fluid flow that block the swimming of both smooth-swimming and run-and-tumble emph{Bacillus subtilis} bacteria. We identify key phase-space structures, called swimming invariant manifolds (SwIMs), that serve as separatrices between different regions of long-time swimmer behavior. When projected into $xy$-space, the edges of the SwIMs act as one-way barriers, consistent with the experiments.
A mean-field approach (MFA) is proposed for the analysis of orientational order in a two-dimensional system of stochastic self-propelled particles interacting by local velocity alignment mechanism. The treatment is applied to the cases of ferromagnetic (F) and liquid-crystal (LC) alignment. In both cases, MFA yields a second order phase transition for a critical noise strength and a scaling exponent of 1/2 for the respective order parameters. We find that the critical noise amplitude $eta_c$ at which orientational order emerges in the LC case is smaller than in the F-alignment case, i.e. $eta^{LC}_{C}<eta^{F}_{C}$. A comparison with simulations of individual-based models with F- resp. LC-alignment shows that the predictions about the critical behavior and the qualitative relation between the respective critical noise amplitudes are correct.
Run-and-tumble dynamics is a wide-spread mechanism of swimming bacteria. The accumulation of run-and-tumble microswimmers near impermeable surfaces is studied theoretically and numerically in the low-density limit in two and three spatial dimensions. Both uni-modal and exponential distributions of the run lengths are considered. Constant run lengths lead to {peaks and depletions regions} in the density distribution of particles near the surface, in contrast to {exponentially-distributed run lengths}. Finally, we present a universal accumulation law for large channel widths, which applies not only to run-and-tumble swimmers, but also to many other kinds of self-propelled particles.
We study the large deviations of the distribution P(W_tau) of the work associated with the propulsion of individual active brownian particles in a time interval tau, in the region of the phase diagram where macroscopic phase separation takes place. P(W_tau) is characterised by two peaks, associated to particles in the gaseous and in the clusterised phases, and two separate non-convex branches. Accordingly, the generating function of W_tau cumulants displays a double singularity. We discuss the origin of such non-convex branches in terms of the peculiar dynamics of the system phases, and the relation between the observation time tau and the typical persistence times of the particles in the two phases.
174 - Thomas Ihle 2015
Recently, an Enskog-type kinetic theory for Vicsek-type models for self-propelled particles has been proposed [T. Ihle, Phys. Rev. E 83, 030901 (2011)]. This theory is based on an exact equation for a Markov chain in phase space and is not limited to small density. Previously, the hydrodynamic equations were derived from this theory and its transport coefficients were given in terms of infinite series. Here, I show that the transport coefficients take a simple form in the large density limit. This allows me to analytically evaluate the well-known density instability of the polarly ordered phase near the flocking threshold at moderate and large densities. The growth rate of a longitudinal perturbation is calculated and several scaling regimes, including three different power laws, are identified. It is shown that at large densities, the restabilization of the ordered phase at smaller noise is analytically accessible within the range of validity of the hydrodynamic theory. Analytical predictions for the width of the unstable band, the maximum growth rate and for the wave number below which the instability occurs are given. In particular, the system size below which spatial perturbations of the homogeneous ordered state are stable is predicted to scale with $sqrt{M}$ where $M$ is the average number of collision partners. The typical time scale until the instability becomes visible is calculated and is proportional to M.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا