Do you want to publish a course? Click here

A note on the diffusivity of finite-range asymmetric exclusion processes on Z

144   0   0.0 ( 0 )
 Added by Jeremy Quastel
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The diffusivity $D(t)$ of finite-range asymmetric exclusion processes on $mathbb Z$ with non-zero drift is expected to be of order $t^{1/3}$. Sepp{a}lainen and Balazs recently proved this conjecture for the nearest neighbor case. We extend their results to general finite range exclusion by proving that the Laplace transform of the diffusivity is of the conjectured order. We also obtain a pointwise upper bound for $D(t)$ the correct order.



rate research

Read More

202 - J. Beltran , C. Landim 2008
We propose a definition o meta-stability and obtain sufficient conditions for a sequence of Markov processes on finite state spaces to be meta-stable. In the reversible case, these conditions reduce to estimates of the capacity and the measure of certain meta-stable sets. We prove that a class of condensed zero-range processes with asymptotically decreasing jump rates is meta-stable.
We investigate the macroscopic behavior of asymmetric attractive zero-range processes on $mathbb{Z}$ where particles are destroyed at the origin at a rate of order $N^beta$, where $beta in mathbb{R}$ and $Ninmathbb{N}$ is the scaling parameter. We prove that the hydrodynamic limit of this particle system is described by the unique entropy solution of a hyperbolic conservation law, supplemented by a boundary condition depending on the range of $beta$. Namely, if $beta geqslant 0$, then the boundary condition prescribes the particle current through the origin, whereas if $beta<0$, the destruction of particles at the origin has no macroscopic effect on the system and no boundary condition is imposed at the hydrodynamic limit.
We study the one-dimensional asymmetric simple exclusion process on the lattice ${1,dots,N}$ with creation/annihilation at the boundaries. The boundary rates are time dependent and change on a slow time scale $N^{-a}$ with $a>0$. We prove that at the time scale $N^{1+a}$ the system evolves quasi-statically with a macroscopic density profile given by the entropy solution of the stationary Burgers equation with boundary densities changing in time, determined by the corresponding microscopic boundary rates. We consider two different types of boundary rates: the Liggett boundaries that correspond to the projection of the infinite dynamics, and the reversible boundaries, that correspond to the contact with particle reservoirs in equilibrium. The proof is based on the control of the Lax boundary entropy--entropy flux pairs and a coupling argument.
127 - Lu Xu 2021
We consider the asymmetric simple exclusion process (ASEP) on the one-dimensional lattice. The particles can be created/annihilated at the boundaries with time-dependent rate. These boundary dynamics are properly accelerated. We prove the hydrodynamic limit of the particle density profile, under the hyperbolic space-time rescaling, evolves with the entropy solution to Burgers equation with Dirichlet boundary conditions. The boundary conditions are characterised by boundary entropy flux pair.
We consider a random walk on a homogeneous Poisson point process with energy marks. The jump rates decay exponentially in the A-power of the jump length and depend on the energy marks via a Boltzmann--like factor. The case A=1 corresponds to the phonon-induced Mott variable range hopping in disordered solids in the regime of strong Anderson localization. We prove that for almost every realization of the marked process, the diffusively rescaled random walk, with arbitrary start point, converges to a Brownian motion whose diffusion matrix is positive definite, and independent of the environment. Finally, we extend the above result to other point processes including diluted lattices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا