Do you want to publish a course? Click here

Ultraluminous Infrared Galaxies at 1.5<z<3 occupy dark matter haloes of mass ~6x10^13 solar masses

224   0   0.0 ( 0 )
 Added by Duncan Farrah
 Publication date 2007
  fields Physics
and research's language is English
 Authors D. Farrah




Ask ChatGPT about the research

We present measurements of the spatial clustering of ultraluminous infrared galaxies in two redshift intervals, 1.5<z<2.0 and 2<z<3. Both samples cluster strongly, with r_0=14.40+/-1.99 h^-1 Mpc for the 2<z<3 sample, and r_0=9.40+/-2.24 h^-1 Mpc for the 1.5<z<2.0 sample, making them among the most biased galaxies at these epochs. These clustering amplitudes are consistent with both populations residing in dark matter haloes with masses of ~6x10^13 solar masses. We infer that a minimum dark matter halo mass is an important factor for all forms of luminous, obscured activity in galaxies at z>1. Adopting plausible models for the growth of DM haloes with redshift, then the haloes hosting the 2<z<3 sample will likely host the richest clusters of galaxies at z=0, whereas the haloes hosting the 1.5<z<2.0 sample will likely host poor to rich clusters at z=0.



rate research

Read More

68 - Duncan Farrah 2006
We present measurements of the spatial clustering of galaxies with stellar masses >10^11Msun, infrared luminosities >10^12 Lsun, and star formation rates >200Msun per year in two redshift intervals; 1.5<z<2.0 and 2<z<3. Both samples cluster very strongly, with spatial correlation lengths of r_0=14.40+/-1.99 h^-1Mpc for the 2<z<3 sample, and r_0=9.40+/-2.24 h^-1Mpc for the 1.5<z<2.0 sample. These clustering amplitudes are consistent with both populations residing in dark matter haloes with masses of ~6x10^13Msun, making them among the most biased galaxies at these epochs. We infer, from this and previous results, that a minimum dark matter halo mass is an important factor for all forms of luminous, obscured activity in galaxies at z>1, both starbursts and AGN. Adopting plausible models for the growth of DM haloes with redshift, then the haloes hosting the 2<z<3 sample will likely host the richest clusters of galaxies at z=0, whereas the haloes hosting the 1.5<z<2.0 sample will likely host poor to rich clusters at z=0. We conclude that ULIRGs at z>1 signpost stellar buildup in galaxies that will reside in clusters at z=0, with ULIRGs at increasing redshifts signposting the buildup of stars in galaxies that will reside in increasingly rich clusters.
Strong foreground absorption features from singly-ionized Magnesium (Mg II) are commonly observed in the spectra of quasars and are presumed to probe a wide range of galactic environments. To date, measurements of the average dark matter halo masses of intervening Mg II absorbers by way of large-scale cross-correlations with luminous galaxies have been limited to z<0.7. In this work we cross-correlate 21 strong (W{lambda}2796>0.6 {deg}A) Mg II absorption systems detected in quasar spectra from the Sloan Digital Sky Survey Data Release 7 with ~32,000 spectroscopically confirmed galaxies at 0.7<z<1.45 from the DEEP2 galaxy redshift survey. We measure dark matter (DM) halo biases of b_G=1.44pm0.02 and b_A=1.49pm0.45 for the DEEP2 galaxies and Mg II absorbers, respectively, indicating that their clustering amplitudes are roughly consistent. Haloes with the bias we measure for the Mg II absorbers have a corresponding mass of 1.8(+4.2/-1.6) times 10^12h-1M_sun, although the actual mean absorber halo mass will depend on the precise distribution of absorbers within DM haloes. This mass estimate is consistent with observations at z=0.6, suggesting that the halo masses of typical Mg II absorbers do not significantly evolve from z~1. We additionally measure the average W{lambda}2796>0.6 AA gas covering fraction to be f =0.5 within 60 h-1kpc around the DEEP2 galaxies, and we find an absence of coincident strong Mg II absorption beyond a projected separation of ~40 h-1kpc. Although the star-forming z>1 DEEP2 galaxies are known to exhibit ubiquitous blueshifted Mg II absorption, we find no direct evidence in our small sample linking W{lambda}2796>0.6 AA absorbers to galaxies with ongoing star formation.
We analyze the multi-wavelength photometric and spectroscopic data of 12 ultraluminous infrared galaxies (ULIRGs) at z ~ 1 and compare them with models of stars and dust in order to study the extinction law and star formation in young infrared (IR) galaxies. Five extinction curves, namely, the Milky Way (MW), the pseudo MW which is MW-like without the 2175 Angstrom feature, the Calzetti, and two SN dust curves, are applied to the data, by combining with various dust distributions, namely, the uniform dust screen, the clumpy dust screen, the internal dust geometry, and the composite geometry with a combination of dust screen and internal dust. Employing a minimum chi square method, we find that the foreground dust screen geometry, especially combined with the 8 - 40 M_sun SN extinction curve, provides a good approximation to the real dust geometry, whereas internal dust is only significant in 2 galaxies. The SN extinction curves, which are flatter than the others, reproduce the data of 8(67%) galaxies better. Dust masses are estimated to be in excess of ~ 10^8 M_sun. Inferred ages of the galaxies are very young, 8 of which range from 10 to 650 Myr. The SN-origin dust is the most plausible to account for the vast amount of dust masses and the flat slope of the observed extinction law. The inferred dust mass per SN ranges from 0.01 to 0.4 M_sun/SN.
We present low-resolution (64 < R < 124) mid-infrared (8--38 micron) Spitzer/IRS spectra of two z~1.3 ultraluminous infrared galaxies (LFIR~10^13) discovered in a Spitzer/MIPS survey of the Bootes field of the NOAO Deep Wide-Field Survey (NDWFS). MIPS J142824.0+352619 is a bright 160 micron source with a large infrared-to-optical flux density ratio and a possible lensing amplification of <~10. The 6.2, 7.7, 11.3, and 12.8 micron PAH emission bands in its IRS spectrum indicate a redshift of z~1.3. The large equivalent width of the 6.2 micron PAH feature indicates that at least 50% of the mid-infrared energy is generated in a starburst, an interpretation that is supported by a large [NeII]/[NeIII] ratio and a low upper limit on the X-ray luminosity. SST24 J142827.19+354127.71 has the brightest 24 micron flux (10.55 mJy) among optically faint (R > 20) galaxies in the NDWFS. Its mid-infrared spectrum lacks emission features, but the broad 9.7 micron silicate absorption band places this source at z~1.3. Given this redshift, SST24 J142827.19+354127.71 has among the largest rest-frame 5 micron luminosities known. The similarity of its SED to those of known AGN-dominated ULIRGs and its lack of either PAH features or large amounts of cool dust indicate that the powerful mid-infrared emission is dominated by an active nucleus rather than a starburst. Our results illustrate the power of the IRS in identifying massive galaxies in the ``redshift desert and in discerning their power sources. Because they are bright, MIPS J142824.0+352619 (pending future observations to constrain its lensing amplification) and SST24 J142827.19+354127.71 are useful z>1 templates of a high luminosity starburst and AGN, respectively.
Many gravitationally lensed quasars exhibit flux ratio anomalies that cannot be explained under the hypothesis that the lensing potential is smooth on scales smaller than one kpc. Micro-lensing by stars is a natural source of granularity in the lens potential. The character of the expected fluctuations due to micro-lensing depends sensitively on the relative surface densities of micro-lenses (stars) and smoothly distributed (dark) matter. Observations of flux ratios may therefore be used to infer the ratio of stellar to dark matter along the line of sight -- typically at impact parameters 1.5 times the half light radius. Several recently discovered systems have anomalies that would seem to be explained by micro-lensing only by demanding that 70-90% of the matter along the line of sight be smoothly distributed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا