Do you want to publish a course? Click here

Drinfeld second realization of the quantum affine superalgebras of $D^{(1)}(2,1;x)$ via the Weyl groupoid

572   0   0.0 ( 0 )
 Added by I. Heckenberger
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We obtain Drinfeld second realization of the quantum affine superalgebras associated with the affine Lie superalgebra $D^{(1)}(2,1;x)$. Our results are analogous to those obtained by Beck for the quantum affine algebras. Becks analysis uses heavily the (extended) affine Weyl groups of the affine Lie algebras. In our approach the structures are based on a Weyl groupoid.



rate research

Read More

171 - Ying Xu , Ruibin Zhang 2018
Drinfeld realisations are constructed for the quantum affine superalgebras of the series ${rmmathfrak{osp}}(1|2n)^{(1)}$,${rmmathfrak{sl}}(1|2n)^{(2)}$ and ${rmmathfrak{osp}}(2|2n)^{(2)}$. By using the realisations, we develop vertex operator representations and classify the finite dimensional irreducible representations for these quantum affine superalgebras.
Following the approach of Ding and Frenkel [Comm. Math. Phys. 156 (1993), 277-300] for type $A$, we showed in our previous work [J. Math. Phys. 61 (2020), 031701, 41 pages] that the Gauss decomposition of the generator matrix in the $R$-matrix presentation of the quantum affine algebra yields the Drinfeld generators in all classical types. Complete details for type $C$ were given therein, while the present paper deals with types $B$ and $D$. The arguments for all classical types are quite similar so we mostly concentrate on necessary additional details specific to the underlying orthogonal Lie algebras.
180 - Ying Xu , Ruibin Zhang 2017
Let Uq(g) be the quantum affine superalgebra associated with an affine Kac-Moody superalgebra g which belongs to the three series osp(1|2n)^(1),sl(1|2n)^(2) and osp(2|2n)^(2). We develop vertex operator constructions for the level 1 irreducible integrable highest weight representations and classify the finite dimensional irreducible representations of Uq(g). This makes essential use of the Drinfeld realisation for Uq(g), and quantum correspondences between affine Kac-Moody superalgebras, developed in earlier papers.
An explicit isomorphism between the $R$-matrix and Drinfeld presentations of the quantum affine algebra in type $A$ was given by Ding and I. Frenkel (1993). We show that this result can be extended to types $B$, $C$ and $D$ and give a detailed construction for type $C$ in this paper. In all classical types the Gauss decomposition of the generator matrix in the $R$-matrix presentation yields the Drinfeld generators. To prove that the resulting map is an isomorphism we follow the work of E. Frenkel and Mukhin (2002) in type $A$ and employ the universal $R$-matrix to construct the inverse map. A key role in our construction is played by a homomorphism theorem which relates the quantum affine algebra of rank $n-1$ in the $R$-matrix presentation with a subalgebra of the corresponding algebra of rank $n$ of the same type.
In this paper, a notion of affine walled Brauer-Clifford superalgebras $BC_{r, t}^{rm aff} $ is introduced over an arbitrary integral domain $R$ containing $2^{-1}$. These superalgebras can be considered as affinization of walled Brauer superalgebras in cite{JK}. By constructing infinite many homomorphisms from $BC_{r, t}^{rm aff}$ to a class of level two walled Brauer-Clifford superagebras over $mathbb C$, we prove that $BC_{r, t}^{rm aff} $ is free over $R$ with infinite rank. We explain that any finite dimensional irreducible $BC_{r, t}^{rm aff} $-module over an algebraically closed field $F$ of characteristic not $2$ factors through a cyclotomic quotient of $BC_{r, t}^{rm aff} $, called a cyclotomic (or level $k$) walled Brauer-Clifford superalgebra $ BC_{k, r, t}$. Using a previous method on cyclotomic walled Brauer algebras in cite{RSu1}, we prove that $BC_{k, r, t}$ is free over $R$ with super rank $(k^{r+t}2^{r+t-1} (r+t)!, k^{r+t}2^{r+t-1} (r+t)!)$ if and only if it is admissible in the sense of Definition~6.4. Finally, we prove that the degenerate affine (resp., cyclotomic) walled Brauer-Clifford superalgebras defined by Comes-Kujawa in cite{CK} are isomorphic to our affine (resp., cyclotomic) walled Brauer-Clifford superalgebras.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا